Skip to content

Commit

Permalink
[doc] layergroup opt intro
Browse files Browse the repository at this point in the history
Change-Id: I0797b73e4d020e9556da29d1c1a743b8c80a83ad
  • Loading branch information
charlesxzb committed Nov 22, 2024
1 parent 20e20b3 commit 537bd53
Show file tree
Hide file tree
Showing 2 changed files with 2 additions and 2 deletions.
2 changes: 1 addition & 1 deletion docs/developer_manual/source_en/03_user_interface.rst
Original file line number Diff line number Diff line change
Expand Up @@ -595,7 +595,7 @@ Convert the mlir file into the corresponding model, the parameters are as follow
- whether layer groups force group by cores, auto/true/false, default is auto
* - opt
- N
- Optimization type of LayerGroup, 1 or 2, default is 2
- Optimization type of LayerGroup, 1/2/3, default is 2. 1: Simple LayerGroup mode, all operators will be grouped as much as possible, and the compilation speed is faster; 2: Dynamic compilation calculates the global cycle optimal Group grouping, suitable for single-core inference graphs; 3: Linear programming LayerGroup mode, suitable for training graphs.
* - addr_mode
- N
- set address assign mode ['auto', 'basic', 'io_alone', 'io_tag', 'io_tag_fuse'], if not set, auto as default
Expand Down
2 changes: 1 addition & 1 deletion docs/developer_manual/source_zh/03_user_interface.rst
Original file line number Diff line number Diff line change
Expand Up @@ -608,7 +608,7 @@ model_deploy.py
- layer groups是否根据core数目进行强制分组, 可选auto/true/false, 默认为auto
* - opt
- 否
- LayerGroup优化类型,可选1/2, 默认为2
- LayerGroup优化类型,可选1/2/3, 默认为2。1:简单LayerGroup模式,所有算子会尽可能做Group,编译速度较快;2:通过动态编译计算全局cycle最优的Group分组,适用于单核推理图;3:线性规划LayerGroup模式,适用于模型训练图编译。
* - addr_mode
- 否
- 设置地址分配模式['auto', 'basic', 'io_alone', 'io_tag', 'io_tag_fuse'], 默认为auto
Expand Down

0 comments on commit 537bd53

Please sign in to comment.