Two translators are available in pysmt/rewritings.py:
- A fixed-point to real converter (
Lines 1249 to 1502 in 0a6a72a
class FXPToReal(DagWalker): def __init__(self, environment=None): DagWalker.__init__(self, environment) self.mgr = self.env.formula_manager self.symbol_map = dict() self.st_real = self.mgr.Real(0) self.wp_real = self.mgr.Real(1) self.ru_real = self.mgr.Real(0) self.rd_real = self.mgr.Real(1) #def convert(self, formula): # return self.walk(formula) def walk_and(self, formula, args, **kwargs): return self.mgr.And(*args) def walk_or(self, formula, args, **kwargs): return self.mgr.Or(*args) def walk_implies(self, formula, args, **kwargs): return self.mgr.Implies(args[0], args[1]) def process_real_noround(self,realval,om,sign,total_width,frac_width): if sign==0: max_value = self.mgr.Real(Fraction(2**total_width - 1, 2**frac_width)) min_value = self.mgr.Real(0) else: max_value = self.mgr.Real(Fraction(2**(total_width - 1)-1, 2**frac_width)) min_value = self.mgr.Real(Fraction(-2**(total_width - 1), 2**frac_width)) modulo=self.mgr.Real(2**(total_width-frac_width)) flodiv=self.mgr.RealToInt(self.mgr.Div(realval,modulo,reduce_const=False)) divres=self.mgr.ToReal(flodiv) remain=self.mgr.Minus(realval,self.mgr.Times(modulo,divres)) if sign==1: remain=self.mgr.Ite( self.mgr.LE(remain, max_value), remain, self.mgr.Minus(remain,modulo) ) wrapped_res = remain saturated_res = self.mgr.Ite( self.mgr.GT(realval, max_value), max_value, self.mgr.Ite(self.mgr.LT(realval, min_value), min_value, realval) ) return self.mgr.Ite(self.mgr.Equals(om, self.wp_real), wrapped_res, saturated_res) def round_real(self,realval,rm,frac_width): base=self.mgr.Real(2**frac_width) flo=self.mgr.RealToInt(self.mgr.Times(realval,base)) result = self.mgr.ToReal(flo) frac = self.mgr.Minus(result, self.mgr.Times(realval,base)) result = self.mgr.Ite( self.mgr.And( self.mgr.Equals(rm, self.ru_real), self.mgr.Not( self.mgr.Equals( frac, self.mgr.Real(0)))), self.mgr.Plus(result,self.mgr.Real(1)), result) result = self.mgr.Div(result,base) return result def process_real_round(self,realval,om,rm,sign,total_width,frac_width): tempres = self.round_real(realval,rm,frac_width) result = self.process_real_noround(tempres,om,sign,total_width,frac_width) return result def walk_ufxp_add(self, formula, args, **kwargs): ty = self.env.stc.get_type(formula) total_width = ty.total_width frac_width = ty.frac_width om = args[0] left = args[1] right = args[2] result = self.mgr.Plus(left,right) return self.process_real_noround(result,om,0,total_width,frac_width) def walk_sfxp_add(self, formula, args, **kwargs): ty = self.env.stc.get_type(formula) total_width = ty.total_width frac_width = ty.frac_width om = args[0] left = args[1] right = args[2] result = self.mgr.Plus(left,right) return self.process_real_noround(result,om,1,total_width,frac_width) def walk_ufxp_sub(self, formula, args, **kwargs): ty = self.env.stc.get_type(formula) total_width = ty.total_width frac_width = ty.frac_width om = args[0] left = args[1] right = args[2] result = self.mgr.Minus(left,right) return self.process_real_noround(result,om,0,total_width,frac_width) def walk_sfxp_sub(self, formula, args, **kwargs): ty = self.env.stc.get_type(formula) total_width = ty.total_width frac_width = ty.frac_width om = args[0] left = args[1] right = args[2] result = self.mgr.Minus(left,right) return self.process_real_noround(result,om,1,total_width,frac_width) def walk_ufxp_mul(self, formula, args, **kwargs): ty = self.env.stc.get_type(formula) total_width = ty.total_width frac_width = ty.frac_width om = args[0] rm = args[1] left = args[2] right = args[3] result = self.mgr.Times(left,right) return self.process_real_round(result,om,rm,0,total_width,frac_width) def walk_sfxp_mul(self, formula, args, **kwargs): ty = self.env.stc.get_type(formula) total_width = ty.total_width frac_width = ty.frac_width om = args[0] rm = args[1] left = args[2] right = args[3] result = self.mgr.Times(left,right) return self.process_real_round(result,om,rm,1,total_width,frac_width) def walk_ufxp_div(self, formula, args, **kwargs): ty = self.env.stc.get_type(formula) total_width = ty.total_width frac_width = ty.frac_width om = args[0] rm = args[1] left = args[2] right = args[3] return self.process_real_round(self.mgr.Div(left,right,reduce_const=False),om,rm,0,total_width,frac_width) def walk_sfxp_div(self, formula, args, **kwargs): ty = self.env.stc.get_type(formula) total_width = ty.total_width frac_width = ty.frac_width om = args[0] rm = args[1] left = args[2] right = args[3] return self.process_real_round(self.mgr.Div(left,right,reduce_const=False),om,rm,1,total_width,frac_width) def walk_symbol(self, formula, **kwargs): ty = self.env.stc.get_type(formula) if ty.is_fxp_type(): if formula not in self.symbol_map: self.symbol_map[formula] = \ self.mgr.FreshSymbol(types.REAL) return self.symbol_map[formula] elif ty.is_fxp_om_type() or ty.is_fxp_rm_type(): if formula not in self.symbol_map: self.symbol_map[formula] = \ self.mgr.FreshSymbol(types.REAL) return self.symbol_map[formula] else: return formula def walk_st(self, formula, **kwargs): return self.st_real def walk_wp(self, formula, **kwargs): return self.wp_real def walk_ru(self, formula, **kwargs): return self.ru_real def walk_rd(self, formula, **kwargs): return self.rd_real def walk_equals(self, formula, args, **kwargs): left = args[0] right = args[1] return self.mgr.Equals(left, right) def walk_ite(self, formula, args, **kwargs): return formula def walk_not(self, formula, args, **kwargs): return self.mgr.Not(args[0]) def walk_bv_constant(self, formula, args, **kwargs): return formula def convert(self, formula): return self.walk(formula) def walk_ufxp_constant(self, formula, args, **kwargs): bv = args[0] bv_val = bv._content.payload[0] frac_width = formula._content.payload[0] return self.mgr.Real(Fraction(bv_val, 2**frac_width)) def walk_sfxp_constant(self, formula, args, **kwargs): bv = args[0] bv_val = bv._content.payload[0] ty = self.env.stc.get_type(formula) total_width = ty.total_width frac_width = formula._content.payload[0] if bv_val>2**(total_width-1)-1: bv_val=bv_val-2**total_width return self.mgr.Real(Fraction(bv_val, 2**frac_width)) def walk_ufxp_lt(self, formula, args, **kwargs): return self.mgr.LT(args[0], args[1]) def walk_ufxp_le(self, formula, args, **kwargs): return self.mgr.LE(args[0], args[1]) def walk_sfxp_gt(self, formula, args, **kwargs): return self.mgr.GT(args[0], args[1]) def walk_sfxp_ge(self, formula, args, **kwargs): return self.mgr.GE(args[0], args[1]) def walk_sfxp_lt(self, formula, args, **kwargs): return self.mgr.LT(args[0], args[1]) def walk_sfxp_le(self, formula, args, **kwargs): return self.mgr.LE(args[0], args[1]) def walk_ufxp_gt(self, formula, args, **kwargs): return self.mgr.GT(args[0], args[1]) def walk_ufxp_ge(self, formula, args, **kwargs): return self.mgr.GE(args[0], args[1]) def walk_bool_constant(self, formula, args, *kwargs): return formula def walk_iff(self, formula, args, *kwargs): return self.mgr.Iff(args[0], args[1]) - A fixed-point to bitvector converter (
Lines 825 to 1247 in 0a6a72a
class FXPToBV(DagWalker): def __init__(self, environment=None): DagWalker.__init__(self, environment) self.mgr = self.env.formula_manager self.symbol_map = dict() self.st_bv = self.mgr.BV(0, 1) self.wp_bv = self.mgr.BV(1, 1) self.ru_bv = self.mgr.BV(0, 1) self.rd_bv = self.mgr.BV(1, 1) self.divz_res = dict() def _get_divz_res(self, sgn, tb, fb): key = (sgn, tb, fb) if key not in self.divz_res.keys(): ftype = types.FunctionType(types.BVType(tb), [types.BVType(1), types.BVType(1), types.BVType(tb)]) func = self.mgr.FreshSymbol(ftype) self.divz_res[key] = func return self.divz_res[key] def convert(self, formula): return self.walk(formula) def bv_extend(self, bv, length, sign): if sign: return self.mgr.BVSExt(bv, length) else: return self.mgr.BVZExt(bv, length) def walk_ufxp_add(self, formula, args, **kwargs): ty = self.env.stc.get_type(formula) total_width = ty.total_width extended_width = total_width + 1 max_value = self.mgr.BV(2**total_width - 1, total_width) extended_max_value = self.mgr.BV(2**total_width - 1, extended_width) om = args[0] left = args[1] right = args[2] extended_sum = self.mgr.BVAdd( self.bv_extend(left, 1, False), self.bv_extend(right, 1, False)) wrapped_sum = self.mgr.BVAdd(left, right) saturated_sum = self.mgr.Ite( self.mgr.BVUGT(extended_sum, extended_max_value), max_value, wrapped_sum) return self.mgr.Ite(self.mgr.Equals(om, self.wp_bv), wrapped_sum, saturated_sum) def convert_sfxp_lop(self, bv_op, formula, args, **kwargs): ty = self.env.stc.get_type(formula) total_width = ty.total_width extended_width = total_width + 1 max_value = self.mgr.SBV(2**(total_width - 1) - 1, total_width) extended_max_value = self.mgr.SBV(2**(total_width - 1) - 1, extended_width) min_value = self.mgr.SBV(-2**(total_width - 1), total_width) extended_min_value = self.mgr.SBV(-2**(total_width - 1), extended_width) om = args[0] left = args[1] right = args[2] extended_sum = bv_op( self.bv_extend(left, 1, True), self.bv_extend(right, 1, True)) wrapped_sum = bv_op(left, right) saturated_sum = self.mgr.Ite( self.mgr.BVSGT(extended_sum, extended_max_value), max_value, self.mgr.Ite( self.mgr.BVSLT(extended_sum, extended_min_value), min_value, wrapped_sum)) return self.mgr.Ite(self.mgr.Equals(om, self.wp_bv), wrapped_sum, saturated_sum) def walk_sfxp_add(self, formula, args, **kwargs): return self.convert_sfxp_lop(self.mgr.BVAdd, formula, args, **kwargs) def walk_ufxp_sub(self, formula, args, **kwargs): ty = self.env.stc.get_type(formula) total_width = ty.total_width om = args[0] left = args[1] right = args[2] wrapped_sub = self.mgr.BVSub(left, right) saturated_sub = self.mgr.Ite( self.mgr.BVUGT(left, right), wrapped_sub, self.mgr.BV(0, total_width)) return self.mgr.Ite(self.mgr.Equals(om, self.wp_bv), wrapped_sub, saturated_sub) def walk_sfxp_sub(self, formula, args, **kwargs): return self.convert_sfxp_lop(self.mgr.BVSub, formula, args, **kwargs) def walk_ufxp_mul(self, formula, args, **kwargs): ty = self.env.stc.get_type(formula) total_width = ty.total_width extended_width = total_width * 2 frac_width = ty.frac_width om = args[0] rm = args[1] left = args[2] right = args[3] # sign extended to double bit-width extended_left = self.bv_extend(left, total_width, False) extended_right = self.bv_extend(right, total_width, False) # perform multiplication # the result is # | integral part (2*int_width) | fractional part (2* frac_width)| # that represents the exact result # x*y/2^(2*fb) precise_res_in_bv = self.mgr.BVMul(extended_left, extended_right) # do rounding dumped_bits = self.mgr.BVExtract(precise_res_in_bv, 0, frac_width - 1) rounded_res_in_bv = self.mgr.BVExtract(precise_res_in_bv, frac_width, extended_width - 1) # if rounding mode is round up and the last frac_width bits are not 0s, # round the left part up by 1 # otherwise use the remaining bits rounded_res_in_bv = self.mgr.Ite( self.mgr.And( self.mgr.Equals(rm, self.ru_bv), self.mgr.Not( self.mgr.Equals( dumped_bits, self.mgr.BV(0, frac_width)))), self.mgr.BVAdd( rounded_res_in_bv, self.mgr.BV(1, extended_width - frac_width)), rounded_res_in_bv) # overflow handling max_value_in_extended_width = self.mgr.BV(2**total_width - 1, extended_width - frac_width) wrapped_res = self.mgr.BVExtract(rounded_res_in_bv, 0, total_width - 1) saturated_res = self.mgr.Ite( self.mgr.BVUGT(rounded_res_in_bv, max_value_in_extended_width), self.mgr.BV(2**total_width - 1, total_width), wrapped_res) return self.mgr.Ite( self.mgr.Equals(om, self.wp_bv), wrapped_res, saturated_res) def walk_sfxp_mul(self, formula, args, **kwargs): ty = self.env.stc.get_type(formula) total_width = ty.total_width extended_width = total_width * 2 frac_width = ty.frac_width om = args[0] rm = args[1] left = args[2] right = args[3] # sign extended to double bit-width extended_left = self.bv_extend(left, total_width, True) extended_right = self.bv_extend(right, total_width, True) # perform multiplication # the result is # | integral part (2*int_width) | fractional part (2* frac_width)| # that represents the exact result # x*y/2^(2*fb) precise_res_in_bv = self.mgr.BVMul(extended_left, extended_right) # do rounding dumped_bits = self.mgr.BVExtract(precise_res_in_bv, 0, frac_width - 1) rounded_res_in_bv = self.mgr.BVExtract(precise_res_in_bv, frac_width, extended_width - 1) # if rounding mode is round up and the last frac_width bits are not 0s, # round the left part up by 1 # otherwise use the remaining bits rounded_res_in_bv = self.mgr.Ite( self.mgr.And( self.mgr.Equals(rm, self.ru_bv), self.mgr.Not( self.mgr.Equals( dumped_bits, self.mgr.BV(0, frac_width)))), self.mgr.BVAdd( rounded_res_in_bv, self.mgr.BV(1, extended_width - frac_width)), rounded_res_in_bv) # overflow handling max_value_in_extended_width = self.mgr.BV(2**(total_width - 1) - 1, extended_width - frac_width) min_value_in_extended_width = self.mgr.BV((2**(total_width - frac_width + 1) - 1) << (total_width - 1), extended_width - frac_width) wrapped_res = self.mgr.BVExtract(rounded_res_in_bv, 0, total_width - 1) saturated_res = self.mgr.Ite( self.mgr.BVSGT(rounded_res_in_bv, max_value_in_extended_width), self.mgr.BV(2**(total_width - 1) - 1, total_width), self.mgr.Ite( self.mgr.BVSLT(rounded_res_in_bv, min_value_in_extended_width), self.mgr.BV(1 << (total_width - 1), total_width), wrapped_res)) return self.mgr.Ite( self.mgr.Equals(om, self.wp_bv), wrapped_res, saturated_res) def walk_ufxp_div(self, formula, args, **kwargs): ty = self.env.stc.get_type(formula) total_width = ty.total_width frac_width = ty.frac_width extended_width = total_width + frac_width om = args[0] rm = args[1] dividend = args[2] divisor = args[3] zero = self.mgr.BV(0, total_width) allones = self.mgr.BV(2**total_width - 1, total_width) # x/y needs to rounds to z/(2^fb) # this amounts to (2^fb)*(x/y) rounds to z extended_dividend = self.mgr.BVLShl( self.bv_extend(dividend, frac_width, False), self.mgr.BV(frac_width, extended_width)) extended_divisor = self.bv_extend(divisor, frac_width, False) extended_res = self.mgr.BVUDiv(extended_dividend, extended_divisor) remainder = self.mgr.BVURem(extended_dividend, extended_divisor) # do rounding rounded_res = self.mgr.Ite( self.mgr.And( self.mgr.Equals(rm, self.ru_bv), self.mgr.Not( self.mgr.Equals( remainder, self.mgr.BV(0, extended_width)))), self.mgr.BVAdd(extended_res, self.mgr.BV(1, extended_width)), extended_res) # overflow handling max_value = self.mgr.BV(2**total_width - 1, total_width) extended_max_value = self.mgr.BV(2**total_width - 1, extended_width) wrapped_res = self.mgr.BVExtract(rounded_res, 0, total_width - 1) saturated_res = self.mgr.Ite( self.mgr.BVUGT(extended_res, extended_max_value), max_value, wrapped_res) divz_res = self._get_divz_res(False, total_width, frac_width) return self.mgr.Ite( self.mgr.Equals(divisor, zero), divz_res(om, rm, dividend), self.mgr.Ite( self.mgr.Equals(om, self.wp_bv), wrapped_res, saturated_res)) def walk_sfxp_div(self, formula, args, **kwargs): ty = self.env.stc.get_type(formula) total_width = ty.total_width frac_width = ty.frac_width # we need the additional bit as the bvsdiv may overflow extended_width = total_width + frac_width + 1 om = args[0] rm = args[1] dividend = args[2] divisor = args[3] zero = self.mgr.BV(0, total_width) extended_zero = self.mgr.BV(0, extended_width) extended_one = self.mgr.BV(1, extended_width) allones = self.mgr.BV(2**total_width - 1, total_width) # x/y needs to rounds to z/(2^fb) # this amounts to (2^fb)*(x/y) rounds to z extended_dividend = self.mgr.BVLShl( self.bv_extend(dividend, frac_width + 1, True), self.mgr.BV(frac_width, extended_width)) extended_divisor = self.bv_extend(divisor, frac_width + 1, True) extended_res = self.mgr.BVSDiv(extended_dividend, extended_divisor) remainder = self.mgr.BVSRem(extended_dividend, extended_divisor) # do rounding def get_bv_sign(bv): msb_pos = total_width - 1 return self.mgr.Equals( self.mgr.BVExtract(bv, msb_pos, msb_pos), self.mgr.BV(1, 1)) if_ru = self.mgr.Equals(rm, self.ru_bv) dividend_sign = get_bv_sign(dividend) divisor_sign = get_bv_sign(divisor) if_pos = self.mgr.Not( self.mgr.Xor(dividend_sign, divisor_sign)) rounded_res = self.mgr.Ite( self.mgr.Or( self.mgr.Xor(if_ru, if_pos), self.mgr.Equals( remainder, extended_zero)), extended_res, self.mgr.Ite( self.mgr.And(if_ru, if_pos), self.mgr.BVAdd(extended_res, extended_one), self.mgr.BVSub(extended_res, extended_one))) # overflow handling max_value = self.mgr.BV(2**(total_width-1) - 1, total_width) extended_max_value = self.mgr.BV(2**(total_width-1) - 1, extended_width) min_value = self.mgr.SBV(-(2**(total_width - 1)), total_width) extended_min_value = self.mgr.SBV(-(2**(total_width - 1)), extended_width) wrapped_res = self.mgr.BVExtract(rounded_res, 0, total_width - 1) saturated_res = self.mgr.Ite( self.mgr.BVSGT(extended_res, extended_max_value), max_value, self.mgr.Ite( self.mgr.BVSLT(extended_res, extended_min_value), min_value, wrapped_res)) divz_res = self._get_divz_res(True, total_width, frac_width) return self.mgr.Ite( self.mgr.Equals(divisor, zero), # Uninterpreted result on division by zero divz_res(om, rm, dividend), self.mgr.Ite( self.mgr.Equals(dividend, zero), zero, self.mgr.Ite( self.mgr.Equals(om, self.wp_bv), wrapped_res, saturated_res))) def walk_symbol(self, formula, **kwargs): ty = self.env.stc.get_type(formula) if ty.is_fxp_type(): if formula not in self.symbol_map: self.symbol_map[formula] = \ self.mgr.FreshSymbol(types.BVType(ty.total_width)) return self.symbol_map[formula] elif ty.is_fxp_om_type() or ty.is_fxp_rm_type(): if formula not in self.symbol_map: self.symbol_map[formula] = \ self.mgr.FreshSymbol(types.BVType(1)) return self.symbol_map[formula] else: return formula def walk_st(self, formula, **kwargs): return self.st_bv def walk_wp(self, formula, **kwargs): return self.wp_bv def walk_ru(self, formula, **kwargs): return self.ru_bv def walk_rd(self, formula, **kwargs): return self.rd_bv def walk_equals(self, formula, args, **kwargs): left = args[0] right = args[1] return self.mgr.Equals(left, right) def walk_and(self, formula, args, **kwargs): return self.mgr.And(*args) def walk_or(self, formula, args, **kwargs): return self.mgr.Or(*args) def walk_function(self, formula, **kwargs): return formula def walk_implies(self, formula, args, **kwargs): left = args[0] right = args[1] return self.mgr.Implies(left, right) def walk_ite(self, formula, args, **kwargs): return formula def walk_not(self, formula, args, **kwargs): return self.mgr.Not(args[0]) def walk_bv_constant(self, formula, args, **kwargs): return formula def walk_ufxp_constant(self, formula, args, **kwargs): return formula.arg(0) def walk_sfxp_constant(self, formula, args, **kwargs): return formula.arg(0) def walk_ufxp_lt(self, formula, args, **kwargs): return self.mgr.BVULT(args[0], args[1]) def walk_ufxp_le(self, formula, args, **kwargs): return self.mgr.BVULE(args[0], args[1]) def walk_sfxp_lt(self, formula, args, **kwargs): return self.mgr.BVSLT(args[0], args[1]) def walk_sfxp_le(self, formula, args, **kwargs): return self.mgr.BVSLE(args[0], args[1]) def walk_bool_constant(self, formula, args, **kwargs): return formula def walk_iff(self, formula, args, **kwargs): left = args[0] right = args[1] return self.mgr.Iff(left, right)
An example script is also provided (https://github.com/soarlab/pysmt/blob/fixed-points/fxp2smt.py) which converts a QF_FXP smt2 query file to a QF_UFBV or QF_NIRA smt2 query, depending on whether the BV variable is set to True or False respectively.
pySMT makes working with Satisfiability Modulo Theory simple:
- Define formulae in a simple, intuitive, and solver independent way
- Solve your formulae using one of the native solvers, or by wrapping any SMT-Lib compliant solver,
- Dump your problems in the SMT-Lib format,
- and more...
>>> from pysmt.shortcuts import Symbol, And, Not, is_sat
>>>
>>> varA = Symbol("A") # Default type is Boolean
>>> varB = Symbol("B")
>>> f = And(varA, Not(varB))
>>> f
(A & (! B))
>>> is_sat(f)
True
>>> g = f.substitute({varB: varA})
>>> g
(A & (! A))
>>> is_sat(g)
False
Is there a value for each letter (between 1 and 9) so that H+E+L+L+O = W+O+R+L+D = 25?
from pysmt.shortcuts import Symbol, And, GE, LT, Plus, Equals, Int, get_model
from pysmt.typing import INT
hello = [Symbol(s, INT) for s in "hello"]
world = [Symbol(s, INT) for s in "world"]
letters = set(hello+world)
domains = And([And(GE(l, Int(1)),
LT(l, Int(10))) for l in letters])
sum_hello = Plus(hello) # n-ary operators can take lists
sum_world = Plus(world) # as arguments
problem = And(Equals(sum_hello, sum_world),
Equals(sum_hello, Int(25)))
formula = And(domains, problem)
print("Serialization of the formula:")
print(formula)
model = get_model(formula)
if model:
print(model)
else:
print("No solution found")
Portfolio solving consists of running multiple solvers in parallel. pySMT provides a simple interface to perform portfolio solving using multiple solvers and multiple solver configurations.
from pysmt.shortcuts import Portfolio, Symbol, Not
x, y = Symbol("x"), Symbol("y")
f = x.Implies(y)
with Portfolio(["cvc4",
"yices",
("msat", {"random_seed": 1}),
("msat", {"random_seed": 17}),
("msat", {"random_seed": 42})],
logic="QF_UFLIRA",
incremental=False,
generate_models=False) as s:
s.add_assertion(f)
s.push()
s.add_assertion(x)
res = s.solve()
v_y = s.get_value(y)
print(v_y) # TRUE
s.pop()
s.add_assertion(Not(y))
res = s.solve()
v_x = s.get_value(x)
print(v_x) # FALSE
from pysmt.shortcuts import Symbol, get_env, Solver
from pysmt.logics import QF_UFLRA
name = "mathsat-smtlib" # Note: The API version is called 'msat'
# Path to the solver. The solver needs to take the smtlib file from
# stdin. This might require creating a tiny shell script to set the
# solver options.
path = ["/tmp/mathsat"]
logics = [QF_UFLRA,] # List of the supported logics
# Add the solver to the environment
env = get_env()
env.factory.add_generic_solver(name, path, logics)
# The solver name of the SMT-LIB solver can be now used anywhere
# where pySMT would accept an API solver name
with Solver(name=name, logic="QF_UFLRA") as s:
print(s.is_sat(Symbol("x"))) # True
Check out more examples in the examples/ directory and the documentation on ReadTheDocs
pySMT provides methods to define a formula in Linear Real Arithmetic (LRA), Real Difference Logic (RDL), Equalities and Uninterpreted Functions (EUF), Bit-Vectors (BV), Arrays (A), Strings (S) and their combinations. The following solvers are supported through native APIs:
- MathSAT (http://mathsat.fbk.eu/)
- Z3 (https://github.com/Z3Prover/z3/)
- CVC4 (http://cvc4.cs.nyu.edu/web/)
- Yices 2 (http://yices.csl.sri.com/)
- CUDD (http://vlsi.colorado.edu/~fabio/CUDD/)
- PicoSAT (http://fmv.jku.at/picosat/)
- Boolector (http://fmv.jku.at/boolector/)
Additionally, you can use any SMT-LIB 2 compliant solver.
PySMT assumes that the python bindings for the SMT Solver are
installed and accessible from your PYTHONPATH
.
pySMT works on both Python 3.5 and Python 2.7.
You can install the latest stable release of pySMT from PyPI:
# pip install pysmt
this will additionally install the pysmt-install command, that can be used to install the solvers: e.g.,
$ pysmt-install --check
will show you which solvers have been found in your PYTHONPATH
.
PySMT does not depend directly on any solver, but if you want to
perform solving, you need to have at least one solver installed. This
can be used by pySMT via its native API, or passing through an SMT-LIB
file.
The script pysmt-install can be used to simplify the installation of the solvers:
$ pysmt-install --msat
will install MathSAT 5.
By default the solvers are downloaded, unpacked and built in your home directory
in the .smt_solvers
folder. Compiled libraries and actual solver packages are
installed in the relevant site-packages
directory (e.g. virtual environment's
packages root or local user-site). pysmt-install
has many options to
customize its behavior. If you have multiple versions of python in your system,
we recommend the following syntax to run pysmt-install: python -m pysmt install
.
Note: This script does not install required dependencies for building the solver (e.g., make or gcc) and has been tested mainly on Linux Debian/Ubuntu systems. We suggest that you refer to the documentation of each solver to understand how to install it with its python bindings.
For Yices, picosat, and CUDD, we use external wrappers:
- yicespy (https://github.com/pysmt/yicespy)
- repycudd (https://github.com/pysmt/repycudd)
- pyPicoSAT (https://github.com/pysmt/pyPicoSAT)
For instruction on how to use any SMT-LIB complaint solver with pySMT see examples/generic_smtlib.py
For more information, refer to online documentation on ReadTheDocs
The following table summarizes the features supported via pySMT for each of the available solvers.
Solver pySMT name Supported Theories Quantifiers Quantifier Elimination Unsat Core Interpolation MathSAT msat UF, LIA, LRA, BV, AX No msat-fm, msat-lw Yes Yes Z3 z3 UF, LIA, LRA, BV, AX, NRA, NIA z3 z3 Yes Yes CVC4 cvc4 UF, LIA, LRA, BV, AX, S Yes No No No Yices yices UF, LIA, LRA, BV No No No No Boolector btor UF, BV, AX No No No No SMT-Lib Interface <custom> UF, LIA, LRA, BV, AX Yes No No No PicoSAT picosat [None] No [No] No No BDD (CUDD) bdd [None] Yes bdd No No
pySMT is released under the APACHE 2.0 License.
For further questions, feel free to open an issue, or write to [email protected] (Browse the Archive).
If you use pySMT in your work, please consider citing:
@inproceedings{pysmt2015, title={PySMT: a solver-agnostic library for fast prototyping of SMT-based algorithms}, author={Gario, Marco and Micheli, Andrea}, booktitle={SMT Workshop 2015}, year={2015} }