Skip to content

Commit

Permalink
Merge pull request #41 from simontorres/fix_focus_when_data_is_not_good
Browse files Browse the repository at this point in the history
Fix focus when data is not good
  • Loading branch information
simontorres authored Apr 8, 2022
2 parents 755fb99 + c68096c commit 4d933b8
Show file tree
Hide file tree
Showing 8 changed files with 96 additions and 89 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
docs/_build/
.idea/*
dist/*
build/*
*__pycache__*
*.egg-info/*
9 changes: 9 additions & 0 deletions CHANGES.rst
Original file line number Diff line number Diff line change
@@ -1,3 +1,12 @@
.. _v2.0.2:

2.0.2 08-04-2022
================

- Added exception handling for when it's not possible to use scipy.optimize.brent
- Added notes field to report special warnings.


.. _v2.0.1:

2.0.1 23-02-2022
Expand Down
2 changes: 1 addition & 1 deletion docs/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -170,4 +170,4 @@
# -- Options for intersphinx extension ---------------------------------------

# Example configuration for intersphinx: refer to the Python standard library.
intersphinx_mapping = {'https://docs.python.org/': None}
intersphinx_mapping = {'https://docs.python.org/': None}
6 changes: 3 additions & 3 deletions goodman_focus/__init__.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,3 @@
from .version import __version__
from .goodman_focus import GoodmanFocus
from .goodman_focus import run_goodman_focus
from .version import __version__ # noqa: F401
from .goodman_focus import GoodmanFocus # noqa: F401
from .goodman_focus import run_goodman_focus # noqa: F401
136 changes: 72 additions & 64 deletions goodman_focus/goodman_focus.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@

from astropy.io import fits
from astropy.stats import sigma_clip
from astropy.modeling import models, fitting, Model
from astropy.modeling import models, fitting
from ccdproc import CCDData
from ccdproc import ImageFileCollection
from scipy import optimize
Expand Down Expand Up @@ -104,8 +104,6 @@ def get_peaks(ccd, file_name='', plots=False):

clipped_profile = sigma_clip(raw_profile, sigma=1, maxiters=5)

_mean = np.mean(clipped_profile)

clipped_x_axis = [i for i in range(len(clipped_profile)) if not clipped_profile.mask[i]]
cleaned_profile = clipped_profile[~clipped_profile.mask]

Expand All @@ -128,7 +126,6 @@ def get_peaks(ccd, file_name='', plots=False):

peaks = signal.argrelmax(filtered_data, axis=0, order=5)[0]


if len(peaks) == 1:
log.debug(f"Found {len(peaks)} peak in file")
else:
Expand Down Expand Up @@ -283,12 +280,16 @@ def __init__(self,

self.__ccd = None
self.file_name = None
self.__focus = None
self.__fwhm = None
self.__files = None
self.__best_focus = None
self.__best_fwhm = None
self.__best_image = None
self.__best_image_focus = None
self.__best_image_fwhm = None
self._fwhm = None
self.__notes = ''

self.polynomial = models.Polynomial1D(degree=5)
self.fitter = fitting.LevMarLSQFitter()
Expand Down Expand Up @@ -378,47 +379,50 @@ def __call__(self, files=None):
self.log.critical('"files" argument must be a list')
sys.exit(0)


results = []
for focus_group in self.focus_groups:
mode_name = self._get_mode_name(focus_group)

focus_dataframe = self.get_focus_data(group=focus_group)

self._fit(df=focus_dataframe)
self.log.info(f"Best Focus for mode {mode_name} is {self.__best_focus}")
results.append({'date': focus_group['DATE'].tolist()[0],
'time': focus_group['DATE-OBS'].tolist()[0],
'mode_name': mode_name,
'focus': round(self.__best_focus, 10),
'fwhm': round(self.__best_fwhm, 10),
'best_image_name': self.__best_image,
'best_image_focus': round(self.__best_image_focus, 10),
'best_image_fwhm': round(self.__best_image_fwhm, 10),
'focus_data': focus_dataframe['focus'].tolist(),
'fwhm_data': focus_dataframe['fwhm'].tolist()
})

if self.plot_results: # pragma: no cover

fig, ax = plt.subplots()

focus_list = focus_dataframe['focus'].tolist()
fwhm_list = focus_dataframe['fwhm'].tolist()
new_x_axis = np.linspace(focus_list[0], focus_list[-1], 1000)

ax.plot(focus_list, fwhm_list, marker='x', label='Measured FWHM')
ax.axvline(self.__best_focus, color='k', label='Best Focus')
ax.set_title(f"Best Focus:\n{mode_name} {self.__best_focus:.3f}")
ax.set_xlabel("Focus Value")
if 'IM_' in mode_name:
ax.set_ylabel("FWHM")
else:
ax.set_ylabel("Mean FWHM")
ax.plot(new_x_axis,
self.polynomial(new_x_axis), label='Model')
ax.legend(loc='best')
plt.show()
self.notes = ''
try:
focus_dataframe = self.get_focus_data(group=focus_group)

self._fit(df=focus_dataframe)
self.log.info(f"Best Focus for mode {mode_name} is {self.__best_focus}")
results.append({'date': focus_group['DATE'].tolist()[0],
'time': focus_group['DATE-OBS'].tolist()[0],
'mode_name': mode_name,
'notes': self.notes,
'focus': round(self.__best_focus, 10),
'fwhm': round(self.__best_fwhm, 10),
'best_image_name': self.__best_image,
'best_image_focus': round(self.__best_image_focus, 10),
'best_image_fwhm': round(self.__best_image_fwhm, 10),
'focus_data': focus_dataframe['focus'].tolist(),
'fwhm_data': focus_dataframe['fwhm'].tolist()
})

if self.plot_results: # pragma: no cover

fig, ax = plt.subplots()

focus_list = focus_dataframe['focus'].tolist()
fwhm_list = focus_dataframe['fwhm'].tolist()
new_x_axis = np.linspace(focus_list[0], focus_list[-1], 1000)

ax.plot(focus_list, fwhm_list, marker='x', label='Measured FWHM')
ax.axvline(self.__best_focus, color='k', label='Best Focus')
ax.set_title(f"Best Focus:\n{mode_name} {self.__best_focus:.3f}")
ax.set_xlabel("Focus Value")
if 'IM_' in mode_name:
ax.set_ylabel("FWHM")
else:
ax.set_ylabel("Mean FWHM")
ax.plot(new_x_axis,
self.polynomial(new_x_axis), label='Model')
ax.legend(loc='best')
plt.show()
except ValueError as error:
self.log.error(f"Unable to obtain focus due to ValueError: {str(error)}", exc_info=True)

return results

Expand All @@ -440,23 +444,32 @@ def _fit(self, df):
Returns:
"""
focus = df['focus'].tolist()
fwhm = df['fwhm'].tolist()
files = df['file'].tolist()
max_focus = np.max(focus)
min_focus = np.min(focus)
self.polynomial = self.fitter(self.polynomial, focus, fwhm)
self._get_local_minimum(x1=min_focus, x2=max_focus)

index = np.argmin(np.abs(focus - self.__best_focus))

self.__best_image = files[index]
self.__best_image_focus = focus[index]
self.__best_image_fwhm = fwhm[index]
self.__focus = df['focus'].tolist()
self.__fwhm = df['fwhm'].tolist()
self.__files = df['file'].tolist()
max_focus = np.max(self.__focus)
min_focus = np.min(self.__focus)
self.polynomial = self.fitter(self.polynomial, self.__focus, self.__fwhm)
try:
self._get_local_minimum(x1=min_focus, x2=max_focus)
self.notes = f"Focus obtained by using Brent's optimization method."
except ValueError as error:
self.log.error(f"Error finding local minimum with fitted data: {str(error)}")
self.log.warning(f"This method does not guarantee this is the best focus for this setup.")
self.notes = f"Warning: This result does not guarantee this is the best focus."
lowest_fwhm_index = np.argmin(self.__fwhm)
self.__best_focus = self.__focus[lowest_fwhm_index]
self.__best_fwhm = self.__fwhm[lowest_fwhm_index]

index = np.argmin(np.abs(np.array(self.__focus) - self.__best_focus))

self.__best_image = self.__files[index]
self.__best_image_focus = self.__focus[index]
self.__best_image_fwhm = self.__fwhm[index]

return self.polynomial

def _get_local_minimum(self, x1, x2):
def _get_local_minimum(self, x1, x2, x_axis_size=2000):
"""Finds best focus
Using scipy.optimize.brent method that uses an inverse parabolic algorithm.
Expand All @@ -471,7 +484,7 @@ def _get_local_minimum(self, x1, x2):
values (i.e. closest to zero).
"""
x_axis = np.linspace(x1, x2, 2000)
x_axis = np.linspace(x1, x2, x_axis_size)
modeled_data = self.polynomial(x_axis)
index_of_minimum = np.argmin(modeled_data)
middle_point = x_axis[index_of_minimum]
Expand Down Expand Up @@ -540,7 +553,7 @@ def get_focus_data(self, group):
self.file_name),
unit='adu')

peaks, values, x_axis, profile = get_peaks(
peaks, values, x_axis, profile = get_peaks(
ccd=self.__ccd,
file_name=self.file_name,
plots=self.debug)
Expand Down Expand Up @@ -591,14 +604,9 @@ def run_goodman_focus(args=None): # pragma: no cover
debug=args.debug)

results = goodman_focus()
print(results)
log.info("Summary")
for result in results:
print(json.dumps(result, indent=4))
for key in result.keys():
log.info(f"Mode: {key} Best Focus: {result[key]['focus']} at FWHM: {result[key]['fwhm']}. "
f"Best image: {result[key]['best_image']['file_name']} with focus: "
f"{result[key]['best_image']['focus']} and FWHM: {result[key]['best_image']['fwhm']}")
log.info(json.dumps(result, indent=4))


if __name__ == '__main__': # pragma: no cover
Expand Down
25 changes: 7 additions & 18 deletions goodman_focus/tests/test_goodman_focus.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,13 +6,12 @@

from astropy.io import fits
from astropy.modeling import models
from unittest import TestCase, skip
from unittest import TestCase
from ccdproc import CCDData

from ..goodman_focus import GoodmanFocus
from ..goodman_focus import get_args, get_peaks, get_fwhm

import matplotlib.pyplot as plt

logging.disable(logging.CRITICAL)

Expand Down Expand Up @@ -109,13 +108,9 @@ def test_multiple_peaks(self):
class GoodmanFocusTests(TestCase):

def setUp(self):
arguments = ['--data-path', os.getcwd(),
'--file-pattern', '*.fits',
'--obstype', 'FOCUS',
'--features-model', 'gaussian']

number_of_test_subjects = 21
self.file_list = ["file_{}.fits".format(i+1) for i in range(number_of_test_subjects)]
self.file_list = ["file_{}.fits".format(i + 1) for i in range(number_of_test_subjects)]
self.focus_values = list(np.linspace(-2000, 2000, number_of_test_subjects))
fwhm_model = models.Polynomial1D(degree=5)
fwhm_model.c0.value = 5
Expand All @@ -127,8 +122,6 @@ def setUp(self):

self.list_of_fwhm = fwhm_model(self.focus_values)



for i in range(number_of_test_subjects):
now = datetime.datetime.now()
ccd = CCDData(data=np.ones((100, 1000)),
Expand All @@ -153,7 +146,7 @@ def setUp(self):
gaussian = models.Gaussian1D(
mean=500,
amplitude=600,
stddev=self.list_of_fwhm[i]/2.35482004503)
stddev=self.list_of_fwhm[i] / 2.35482004503)

for e in range(100):
ccd.data[e] = gaussian(range(1000))
Expand Down Expand Up @@ -183,10 +176,8 @@ def test_get_focus_data(self):
self.list_of_fwhm)

def test__fit(self):
result = self.goodman_focus._fit(df=self.focus_data_frame)


self.assertIsInstance(result, models.Polynomial1D)
self.goodman_focus._fit(df=self.focus_data_frame)
self.assertIsInstance(self.goodman_focus.polynomial, models.Polynomial1D)

def test__call__(self):
self.goodman_focus()
Expand All @@ -199,7 +190,7 @@ def test__call__Moffat1D(self):

def test__call__with_list(self):
self.assertIsNone(self.goodman_focus.fwhm)
result = self.goodman_focus(files=self.file_list)
self.goodman_focus(files=self.file_list)
self.assertIsNotNone(self.goodman_focus.fwhm)

def test__call__list_file_no_exist(self):
Expand All @@ -224,7 +215,6 @@ def setUp(self):
'FILTER2': ['NO FILTER'] * 5,
'WAVMODE': ['IMAGING'] * 5}


def test_imaging_mode(self):
df = pandas.DataFrame(self.data)
expected_name = 'IM__Blue__FILTER-X'
Expand All @@ -242,7 +232,6 @@ def test_spectroscopy_mode(self):
self.assertEqual(mode_name, expected_name)



class DirectoryAndFilesTest(TestCase):

def setUp(self):
Expand All @@ -268,7 +257,7 @@ def setUp(self):

ccd.write(os.path.join(os.getcwd(),
'test_dir_no_focus',
'file_{}.fits'.format(i+1)))
'file_{}.fits'.format(i + 1)))

def test_directory_does_not_exists(self):

Expand Down
2 changes: 1 addition & 1 deletion goodman_focus/version.py
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@
# This is an automatic generated file please do not edit
__version__ = '2.0.0'
__version__ = '2.0.2'
4 changes: 2 additions & 2 deletions setup.cfg
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ package_name = goodman_focus
description = Finds best focus for Goodman HTS based on a series of images obtained with different focus values
long_description = Standalone app to get the best focus.
author = Simon Torres
author_email = [email protected].edu
author_email = simon.torres@noirlab.edu
license = BSD-3-Clause
# url =
edit_on_github = False
Expand All @@ -32,4 +32,4 @@ install_requires =
sphinx

# version should be PEP440 compatible (http://www.python.org/dev/peps/pep-0440)
version = 2.0.1
version = 2.0.2

0 comments on commit 4d933b8

Please sign in to comment.