-
Notifications
You must be signed in to change notification settings - Fork 432
Other Models
Alexander Veysov edited this page Apr 27, 2023
·
7 revisions
DEPRECATED
Number Detector detects spoken numbers (i.e thirty five) in 4 languages - english, german, russian, spanish
In some cases it is crucial to be able to anonymize large-scale spoken corpora (i.e. remove personal data). Typically personal data is considered to be private or sensitive if it contains a name or some private ID. Name recognition is a highly subjective matter and it depends on locale and business case, but VAD and Number Detection are quite general tasks.
How to use Number Detector:
- It is recommended to split long audio into short ones (< 15s) and apply model on each of them.
- Number Detector can classify if the whole audio contains a number, or if each audio frame contains a number.
- Audio is split into frames in a certain way, so, having a per-frame output, we can reconstruct the time boundaries for numbers with an accuracy of about 0.2s.
example
#@title Install and Import Dependencies
# this assumes that you have a relevant version of PyTorch installed
!pip install -q torchaudio
SAMPLING_RATE = 16000
import torch
torch.set_num_threads(1)
from IPython.display import Audio
from pprint import pprint
# download example
torch.hub.download_url_to_file('https://models.silero.ai/vad_models/en_num.wav', 'en_number_example.wav')
USE_ONNX = False # change this to True if you want to test onnx model
if USE_ONNX:
!pip install -q onnxruntime
model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',
model='silero_number_detector',
force_reload=True,
onnx=USE_ONNX)
(get_number_ts,
save_audio,
read_audio,
collect_chunks,
drop_chunks) = utils
wav = read_audio('en_number_example.wav', sampling_rate=SAMPLING_RATE)
# get number timestamps from full audio file
number_timestamps = get_number_ts(wav, model)
pprint(number_timestamps)
# convert ms in timestamps to samples
for timestamp in number_timestamps:
timestamp['start'] = int(timestamp['start'] * SAMPLING_RATE / 1000)
timestamp['end'] = int(timestamp['end'] * SAMPLING_RATE / 1000)
# merge all number chunks to one audio
save_audio('only_numbers.wav',
collect_chunks(number_timestamps, wav), SAMPLING_RATE)
Audio('only_numbers.wav')
# drop all number chunks from audio
save_audio('no_numbers.wav',
drop_chunks(number_timestamps, wav), SAMPLING_RATE)
Audio('no_numbers.wav')
- 99% validation accuracy.
- Language classifier was trained using audio samples in 4 languages: Russian, English, Spanish, German.
- Arbitrary audio length can be used, although network was trained using audio shorter than 15 seconds
- 95 languages version
example
#@title Install and Import Dependencies
# this assumes that you have a relevant version of PyTorch installed
!pip install -q torchaudio
SAMPLING_RATE = 16000
import torch
torch.set_num_threads(1)
from IPython.display import Audio
from pprint import pprint
# download example
torch.hub.download_url_to_file('https://models.silero.ai/vad_models/en.wav', 'en_example.wav')
USE_ONNX = False # change this to True if you want to test onnx model
if USE_ONNX:
!pip install -q onnxruntime
model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',
model='silero_lang_detector',
force_reload=True,
onnx=USE_ONNX)
get_language, read_audio = utils
wav = read_audio('en_example.wav', sampling_rate=SAMPLING_RATE)
lang = get_language(wav, model)
print(lang)
- 85% validation accuracy among 95 languages, 90% validation accuracy among 58 language groups
- Language classifier 95 was trained using audio samples in 95 languages
- Arbitrary audio length can be used, although network was trained using audio shorter than 20 seconds
example
#@title Install and Import Dependencies
# this assumes that you have a relevant version of PyTorch installed
!pip install -q torchaudio
SAMPLING_RATE = 16000
import torch
torch.set_num_threads(1)
from IPython.display import Audio
from pprint import pprint
# download example
torch.hub.download_url_to_file('https://models.silero.ai/vad_models/de.wav', 'de_example.wav')
USE_ONNX = False # change this to True if you want to test onnx model
if USE_ONNX:
!pip install -q onnxruntime
model, lang_dict, lang_group_dict, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',
model='silero_lang_detector_95',
force_reload=True,
onnx=USE_ONNX)
get_language_and_group, read_audio = utils
wav = read_audio('de_example.wav', sampling_rate=SAMPLING_RATE)
languages, language_groups = get_language_and_group(wav, model, lang_dict, lang_group_dict, top_n=2)
for i in languages:
pprint(f'Language: {i[0]} with prob {i[-1]}')
for i in language_groups:
pprint(f'Language group: {i[0]} with prob {i[-1]}')