-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
ENH: Refactor h5 analysis script, improve organiztion and allow for m…
…ore analysis types in easier way
- Loading branch information
1 parent
078328e
commit 4c02cdb
Showing
2 changed files
with
258 additions
and
130 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
import numpy as np | ||
import logging | ||
import matplotlib.pyplot as plt | ||
from calibrationSuite.fitFunctions import * | ||
from calibrationSuite.ancillaryMethods import * | ||
from scipy.optimize import curve_fit | ||
|
||
|
||
logger = logging.getLogger(__name__) | ||
|
||
# add more analysis here... | ||
|
||
# fitIndex=3 | ||
def analysis_one(clusters, nBins, sliceCoordinates, rows, cols, fitInfo, lowEnergyCut, highEnergyCut, fileInfo): | ||
fitInfo = np.zeros((rows, cols, 5)) ## mean, std, area, mu, sigma | ||
for i in range(rows): | ||
for j in range(cols): | ||
ax = plt.subplot() | ||
|
||
detRow, detCol = sliceToDetector(i, j, sliceCoordinates) | ||
currGoodClusters = goodClusters(clusters, i, j, nPixelCut=4, isSquare=1) | ||
if len(currGoodClusters) < 5: | ||
print("too few clusters in slice pixel %d, %d: %d" % (i, j, len(currGoodClusters))) | ||
continue | ||
|
||
energies = getClusterEnergies(currGoodClusters) | ||
photonEcut = np.bitwise_and(energies > lowEnergyCut, energies < highEnergyCut) | ||
nPixelClusters = (photonEcut > 0).sum() | ||
print("pixel %d,%d has about %d photons" % (i, j, nPixelClusters)) | ||
logger.info("pixel %d,%d has %d photons" % (i, j, nPixelClusters)) | ||
|
||
photonRegion = energies[photonEcut] | ||
mean = photonRegion.mean() | ||
std = photonRegion.std() | ||
a, mu, sigma = histogramAndFitGaussian(ax, energies, nBins) | ||
area = gaussianArea(a, sigma) | ||
|
||
ax.set_xlabel("energy (keV)") | ||
ax.set_title("pixel %d,%d, small cluster cuts" % (detRow, detCol)) | ||
plt.figtext(0.7, 0.8, "%d entries (peak)" % (area)) | ||
plt.figtext(0.7, 0.75, "mu %0.2f" % (mu)) | ||
plt.figtext(0.7, 0.7, "sigma %0.2f" % (sigma)) | ||
fileNamePlot = "%s/%s_r%d_c%d_r%d_c%d_%s_E.png" % ( | ||
fileInfo.outputDir, | ||
fileInfo.className, | ||
fileInfo.run, | ||
fileInfo.camera, | ||
detRow, | ||
detCol, | ||
fileInfo.label, | ||
) | ||
logger.info("Writing plot: " + fileNamePlot) | ||
plt.savefig(fileNamePlot) | ||
plt.close() | ||
|
||
fileNameNpy = "%s/%s_r%d_c%d_r%d_c%d_%s_fitInfo.npy" % ( | ||
fileInfo.outputDir, | ||
fileInfo.className, | ||
fileInfo.run, | ||
fileInfo.camera, | ||
detRow, | ||
detCol, | ||
fileInfo.label, | ||
) | ||
logger.info("Writing npy: " + fileNameNpy) | ||
np.save(fileNameNpy, fitInfo) | ||
|
||
fitInfo[i, j] = mean, std, area, mu, sigma | ||
return fitInfo | ||
|
||
|
||
# Helpers | ||
def histogramAndFitGaussian(ax, energies, nBins): | ||
y, bin_edges, _ = ax.hist(energies, nBins) | ||
bins = (bin_edges[:-1] + bin_edges[1:]) / 2 | ||
##print(y, bins) | ||
a, mean, std = estimateGaussianParametersFromUnbinnedArray(energies) | ||
try: | ||
popt, pcov = curve_fit(gaussian, bins, y, [a, mean, std]) | ||
popt[1] | ||
popt[2] | ||
fittedFunc = gaussian(bins, *popt) | ||
ax.plot(bins, fittedFunc, color="b") | ||
return popt | ||
except Exception: | ||
return 0, 0, 0 | ||
|
||
|
||
def sliceToDetector(sliceRow, sliceCol, sliceCoordinates): | ||
return sliceRow + sliceCoordinates[0][0], sliceCol + sliceCoordinates[1][0] |
Oops, something went wrong.