-
Notifications
You must be signed in to change notification settings - Fork 22
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
first commit of loss factor analysis algorithm
- Loading branch information
Showing
1 changed file
with
170 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
""" Combined Soiling and Degradation Estimation Module | ||
This module is for estimation of degradation and soiling losses from unlabeled | ||
daily energy production data. Model is of the form | ||
y_t = x_t * d_t * s_t * w_t, for t = 1,...,T | ||
where y_t [kWh] is the measured real daily energy on each day, x_t [kWh] is an ideal yearly baseline of performance, | ||
and d_t, s_t, and w_t are the loss factors for degradation, soiling, and weather respectively. | ||
""" | ||
|
||
from gfosd import Problem | ||
import gfosd.components as comp | ||
from spcqe.functions import make_basis_matrix, make_regularization_matrix | ||
|
||
|
||
class LossFactorEstimator: | ||
def __init__(self, energy_data, **kwargs): | ||
self.energy_data = energy_data | ||
log_energy = np.zeros_like(self.energy_data) | ||
is_zero = np.isclose(dh.daily_signals.energy, 0, atol=1e-1) | ||
log_energy[is_zero] = np.nan | ||
log_energy[~is_zero] = np.log(dh.daily_signals.energy[~is_zero]) | ||
self.log_energy = log_energy | ||
self.use_ixs = ~is_zero | ||
self.problem = self.make_problem(**kwargs) | ||
self.degradation_rate = None | ||
self.energy_model = None | ||
self.log_energy_model = None | ||
self.total_energy_loss = None | ||
self.total_percent_loss = None | ||
self.degradation_energy_loss = None | ||
self.degradation_percent_loss = None | ||
self.soiling_energy_loss = None | ||
self.soiling_percent_loss = None | ||
self.weather_energy_loss = None | ||
self.weather_percent_loss = None | ||
|
||
def estimate_losses(self, solver="CLARABEL"): | ||
self.problem.decompose(solver=solver) | ||
# in the SD formulation, we put the residual term first, so it's the reverse order of how we specify this model (weather last) | ||
self.log_energy_model = self.problem.decomposition[::-1] | ||
self.energy_model = np.exp(self.log_energy_model) | ||
self.degradation_rate = 100 * np.median( | ||
(self.energy_model[1][365:] - self.energy_model[1][:-365]) | ||
/ self.energy_model[1][365:] | ||
) | ||
total_energy = np.sum(self.energy_data[self.use_ixs]) | ||
self.total_energy_loss = total_energy - np.sum( | ||
self.energy_model[0][self.use_ixs] | ||
) | ||
self.degradation_energy_loss = total_energy - np.sum( | ||
np.product(self.energy_model[[True, False, True, True]], axis=0)[ | ||
self.use_ixs | ||
] | ||
) | ||
self.soiling_energy_loss = total_energy - np.sum( | ||
np.product(self.energy_model[[True, True, False, True]], axis=0)[ | ||
self.use_ixs | ||
] | ||
) | ||
self.weather_energy_loss = total_energy - np.sum( | ||
np.product(self.energy_model[[True, True, True, False]], axis=0)[ | ||
self.use_ixs | ||
] | ||
) | ||
items = [ | ||
self.degradation_energy_loss, | ||
self.soiling_energy_loss, | ||
self.weather_energy_loss, | ||
] | ||
avg_item = np.average(items) | ||
new_items = [] | ||
for item in items: | ||
item -= avg_item | ||
item += self.total_energy_loss / len(items) | ||
new_items.append(item) | ||
( | ||
self.degradation_energy_loss, | ||
self.soiling_energy_loss, | ||
self.weather_energy_loss, | ||
) = new_items | ||
self.total_percent_loss = ( | ||
100 * self.total_energy_loss / np.sum(self.energy_data) | ||
) | ||
self.degradation_percent_loss = ( | ||
100 * self.degradation_energy_loss / np.sum(self.energy_data) | ||
) | ||
self.soiling_percent_loss = ( | ||
100 * self.soiling_energy_loss / np.sum(self.energy_data) | ||
) | ||
self.weather_percent_loss = ( | ||
100 * self.weather_energy_loss / np.sum(self.energy_data) | ||
) | ||
|
||
return | ||
|
||
def report(self): | ||
if self.total_energy_loss is not None: | ||
out = { | ||
"degradation rate [%/yr]": self.degradation_rate, | ||
"total percent loss [%]": self.total_percent_loss, | ||
"degradation percent loss [%]": self.degradation_percent_loss, | ||
"soiling percent loss [%]": self.soiling_percent_loss, | ||
"weather percent loss [%]": self.weather_percent_loss, | ||
"total energy loss [kWh]": self.total_energy_loss, | ||
"degradation energy loss [kWh]": self.degradation_energy_loss, | ||
"soiling energy loss [kWh]": self.soiling_energy_loss, | ||
"weather energy loss [kWh]": self.weather_energy_loss, | ||
} | ||
return out | ||
|
||
def holdout_validate(self, seed=None, solver="CLARABEL"): | ||
residual, test_ix = self.problem.holdout_decompose(seed=seed, solver=solver) | ||
error_metric = np.sum(np.abs(residual)) | ||
return error_metric | ||
|
||
def make_problem( | ||
self, | ||
tau=0.95, | ||
num_harmonics=4, | ||
deg_type="linear", | ||
include_soiling=True, | ||
weight_seasonal=10e-2, | ||
weight_soiling_stiffness=1e1, | ||
weight_soiling_sparsity=1e-2, | ||
weight_deg_nonlinear=10e4, | ||
): | ||
# Pinball loss noise | ||
c1 = comp.SumQuantile(tau=tau) | ||
# Smooth periodic term | ||
length = len(self.log_energy) | ||
periods = [365.2425] # average length of a year in days | ||
_B = make_basis_matrix(num_harmonics, length, periods) | ||
_D = make_regularization_matrix(num_harmonics, weight_seasonal, periods) | ||
c2 = comp.Basis(basis=_B, penalty=_D) | ||
# Soiling term | ||
if include_soiling: | ||
c3 = comp.Aggregate( | ||
[ | ||
comp.Inequality(vmax=0), | ||
comp.SumAbs(weight=weight_soiling_stiffness, diff=2), | ||
comp.SumAbs(weight=weight_soiling_sparsity), | ||
] | ||
) | ||
else: | ||
c3 = comp.Aggregate([comp.NoSlope(), comp.FirstValEqual(value=0)]) | ||
# Degradation term | ||
if deg_type == "linear": | ||
c4 = comp.Aggregate([comp.NoCurvature(), comp.FirstValEqual(value=0)]) | ||
elif deg_type == "nonlinear": | ||
n_tot = length | ||
n_reduce = int(0.9 * n_tot) | ||
bottom_mat = sp.lil_matrix((n_tot - n_reduce, n_reduce)) | ||
bottom_mat[:, -1] = 1 | ||
custom_basis = sp.bmat([[sp.eye(n_reduce)], [bottom_mat]]) | ||
c4 = comp.Aggregate( | ||
[ | ||
comp.Inequality(vmax=0, diff=1), | ||
comp.SumSquare(diff=2, weight=weight_deg_nonlinear), | ||
comp.FirstValEqual(value=0), | ||
comp.Basis(custom_basis), | ||
] | ||
) | ||
elif deg_select.value == "none": | ||
c4 = comp.Aggregate([comp.NoSlope(), comp.FirstValEqual(value=0)]) | ||
|
||
prob = Problem(self.log_energy, [c1, c3, c4, c2]) | ||
return prob |