-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add an R script to calculate the repeat element enrichment using
diffRepeats count table as input.
- Loading branch information
Showing
1 changed file
with
69 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
RepeatEnrichment <- function(repcnt.tbl, lib.sizes, conditions, targets) { | ||
# Based on the count table from diffRepeats, calculate the repeat element | ||
# enrichment. | ||
# Args: | ||
# repcnt.tbl: repeat element count table. | ||
# lib.sizes: named vector representing library sizes. | ||
# conditions: a factor describing experimental conditons: Control, Treatment. | ||
# targets: a factor describing target: must be Target or Input. | ||
# character vectors will be converted to factors. | ||
|
||
# Check input arguments. | ||
stopifnot(is.data.frame(repcnt.tbl)) | ||
stopifnot(identical(colnames(repcnt.tbl)[1:3], | ||
c("Name", "Type", "Origin"))) | ||
stopifnot(is.integer(lib.sizes) && !is.null(names(lib.sizes))) | ||
stopifnot(colnames(repcnt.tbl)[4:ncol(repcnt.tbl)] %in% names(lib.sizes)) | ||
stopifnot(is.factor(conditions) || is.character(conditions)) | ||
stopifnot(is.factor(targets) || is.character(targets)) | ||
conditions <- as.factor(conditions) | ||
targets <- as.factor(targets) | ||
stopifnot(nlevels(targets) == 2 && | ||
levels(targets) %in% c("Target", "Input")) | ||
|
||
# Step1: normalize by library sizes. | ||
cnt.tbl <- repcnt.tbl[, 4:ncol(repcnt.tbl)] | ||
ordered.libsz <- lib.sizes[colnames(cnt.tbl)] | ||
norm.tbl <- t((t(cnt.tbl) + 1) / ordered.libsz * 1e6) # pseudo-count: 1 | ||
tar.idx <- which(targets == "Target") | ||
norm.tbl[, tar.idx][cnt.tbl[, tar.idx] == 0] <- 0 | ||
|
||
# Step2: calculate enrichment ratios. | ||
enr.tbl <- sapply(levels(conditions), function(con) { | ||
# browser() | ||
inp.idx <- which(conditions == con & targets == "Input") | ||
if(length(inp.idx) > 1) { | ||
inp.avg <- colMeans(norm.tbl[, inp.idx]) | ||
} else { | ||
inp.avg <- norm.tbl[, inp.idx] | ||
} | ||
tar.idx <- which(conditions == con & targets == "Target") | ||
|
||
norm.tbl[, tar.idx] / inp.avg | ||
}) | ||
|
||
enr.names <- sapply(levels(conditions), function(con) { | ||
tar.idx <- which(conditions == con & targets == "Target") | ||
colnames(norm.tbl)[tar.idx] | ||
}) | ||
enr.names <- paste("Enr(", enr.names, ")", sep="") | ||
colnames(enr.tbl) <- enr.names | ||
|
||
data.frame(repcnt.tbl, enr.tbl, check.names=F) | ||
} | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|