-
Notifications
You must be signed in to change notification settings - Fork 146
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
081a426
commit 536c470
Showing
1 changed file
with
70 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
from tkinter import * | ||
|
||
from simba.mixins.pop_up_mixin import PopUpMixin | ||
from simba.mixins.config_reader import ConfigReader | ||
from simba.ui.tkinter_functions import DropDownMenu, CreateLabelFrameWithIcon, Entry_Box, LabelFrame, Label | ||
from simba.utils.enums import Keys, Links, Formats, Options | ||
from simba.utils.checks import check_if_filepath_list_is_empty | ||
from simba.utils.read_write import read_df | ||
from simba.utils.errors import CountError, DuplicationError | ||
|
||
|
||
class BooleanConditionalSlicerPopUp(PopUpMixin, ConfigReader): | ||
def __init__(self, | ||
config_path: str): | ||
|
||
ConfigReader.__init__(self, config_path=config_path) | ||
PopUpMixin.__init__(self, title='CONDITIONAL AGGREGATE STATISTICS', size=(600, 400)) | ||
|
||
self.rule_cnt_frm = CreateLabelFrameWithIcon(parent=self.main_frm, header='CONDITIONAL RULES #', icon_name=Keys.DOCUMENTATION.value, icon_link=Links.PATH_PLOTS.value) | ||
self.rule_cnt_dropdown = DropDownMenu(self.rule_cnt_frm, '# RULES:', list(range(2, 21)), '25', com=self.create_rules_frames) | ||
self.rule_cnt_dropdown.setChoices(2) | ||
self.rule_cnt_frm.grid(row=0, column=0, sticky='NW') | ||
self.rule_cnt_dropdown.grid(row=0, column=0, sticky='NW') | ||
|
||
self.create_run_frm(run_function=self.run) | ||
check_if_filepath_list_is_empty(filepaths=self.feature_file_paths, error_msg=f'No data found in {self.features_dir}') | ||
data_df = read_df(file_path=self.feature_file_paths[0], file_type=self.file_type) | ||
self.bool_cols = data_df.columns[data_df.apply(self._is_bool)] | ||
if len(self.bool_cols) < 2: | ||
raise CountError(msg=f'The data file {self.feature_file_paths[0]} contains less than 2 boolean columns', source=self.__class__.__name__) | ||
self.create_rules_frames(rules_cnt=2) | ||
self.main_frm.mainloop() | ||
|
||
@staticmethod | ||
def _is_bool(column): | ||
unique_values = set(column) | ||
return unique_values.issubset({0, 1}) | ||
|
||
def create_rules_frames(self, rules_cnt: int): | ||
if hasattr(self, 'rule_definitions_frame'): | ||
self.rule_definitions_frame.destroy() | ||
self.rule_definitions_frame = LabelFrame(self.main_frm, text='CONDITINAL RULES', font=Formats.LABELFRAME_HEADER_FORMAT.value, pady=5, padx=5) | ||
self.rule_definitions_frame.grid(row=1, column=0, sticky='NW') | ||
Label(self.rule_definitions_frame, text='RULE #').grid(row=0, column=0, sticky=NW) | ||
Label(self.rule_definitions_frame, text='BEHAVIOR').grid(row=0, column=1, sticky=NW, padx=5) | ||
Label(self.rule_definitions_frame, text='STATUS').grid(row=0, column=2, sticky=NW, padx=5) | ||
|
||
self.rules = {} | ||
for rule_cnt in range(1, rules_cnt + 1): | ||
self.rules[rule_cnt] = {} | ||
Label(self.rule_definitions_frame, text=str(rule_cnt), font=Formats.LABELFRAME_HEADER_FORMAT.value).grid(row=rule_cnt, column=0, sticky=NW) | ||
self.rules[rule_cnt]['behavior_drpdwn'] = DropDownMenu(self.rule_definitions_frame, '', self.bool_cols, '1', ) | ||
self.rules[rule_cnt]['behavior_drpdwn'].setChoices(self.bool_cols[rule_cnt-1]) | ||
self.rules[rule_cnt]['behavior_drpdwn'].grid(row=rule_cnt, column=1, sticky=NW) | ||
self.rules[rule_cnt]['status_drpdwn'] = DropDownMenu(self.rule_definitions_frame, '', Options.BOOL_STR_OPTIONS.value, '1') | ||
self.rules[rule_cnt]['status_drpdwn'].setChoices(Options.BOOL_STR_OPTIONS.value[0]) | ||
self.rules[rule_cnt]['status_drpdwn'].grid(row=rule_cnt, column=2, sticky=NW) | ||
|
||
def run(self): | ||
unique_rule_behaviors = [] | ||
selections = {} | ||
for rule_id, rule_data in self.rules.items(): | ||
unique_rule_behaviors.append(rule_data['behavior_drpdwn'].getChoices()) | ||
selections[rule_data['behavior_drpdwn'].getChoices()] = rule_data['status_drpdwn'].getChoices() | ||
duplicates = list(set([x for x in unique_rule_behaviors if unique_rule_behaviors.count(x) > 1])) | ||
if len(duplicates) > 0: | ||
raise DuplicationError(msg=f'Each row should be a unique behavior. However, behaviors {duplicates} are selected in more than 1 rows.') | ||
|
||
#roi_featurizer = BooleanConditionalSlicerPopUp(config_path='/Users/simon/Desktop/envs/troubleshooting/two_animals_16bp_032023/project_folder/project_config.ini') | ||
#roi_featurizer = BooleanConditionalSlicerPopUp(config_path='/Users/simon/Desktop/envs/troubleshooting/two_black_animals_14bp/project_folder/project_config.ini') |