-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Revert "Merge branch 'dev' into tutorial-updates"
- Loading branch information
Showing
807 changed files
with
71,176 additions
and
4,890 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.
53 changes: 53 additions & 0 deletions
53
...+composition_constraint-False+categorical-False+custom_threshold-False+synchrony-batch.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
import numpy as np | ||
from ax.service.ax_client import AxClient, ObjectiveProperties | ||
|
||
obj1_name = "branin" | ||
obj2_name = "branin_swapped" | ||
|
||
|
||
def branin_moo(x1, x2): | ||
y = float( | ||
(x2 - 5.1 / (4 * np.pi**2) * x1**2 + 5.0 / np.pi * x1 - 6.0) ** 2 | ||
+ 10 * (1 - 1.0 / (8 * np.pi)) * np.cos(x1) | ||
+ 10 | ||
) | ||
|
||
# second objective has x1 and x2 swapped | ||
y2 = float( | ||
(x1 - 5.1 / (4 * np.pi**2) * x2**2 + 5.0 / np.pi * x2 - 6.0) ** 2 | ||
+ 10 * (1 - 1.0 / (8 * np.pi)) * np.cos(x2) | ||
+ 10 | ||
) | ||
|
||
return {obj1_name: y, obj2_name: y2} | ||
|
||
|
||
ax_client = AxClient() | ||
|
||
ax_client.create_experiment( | ||
parameters=[ | ||
{"name": "x1", "type": "range", "bounds": [-5.0, 10.0]}, | ||
{"name": "x2", "type": "range", "bounds": [0.0, 10.0]}, | ||
], | ||
objectives={ | ||
obj1_name: ObjectiveProperties(minimize=True), | ||
obj2_name: ObjectiveProperties(minimize=True), | ||
}, | ||
) | ||
|
||
|
||
batch_size = 2 | ||
|
||
|
||
for _ in range(19): | ||
|
||
parameterizations, optimization_complete = ax_client.get_next_trials(batch_size) | ||
for trial_index, parameterization in list(parameterizations.items()): | ||
# extract parameters | ||
x1 = parameterization["x1"] | ||
x2 = parameterization["x2"] | ||
|
||
results = branin_moo(x1, x2) | ||
ax_client.complete_trial(trial_index=trial_index, raw_data=results) | ||
|
||
pareto_results = ax_client.get_pareto_optimal_parameters() |
50 changes: 50 additions & 0 deletions
50
...composition_constraint-False+categorical-False+custom_threshold-False+synchrony-single.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
import numpy as np | ||
from ax.service.ax_client import AxClient, ObjectiveProperties | ||
|
||
obj1_name = "branin" | ||
obj2_name = "branin_swapped" | ||
|
||
|
||
def branin_moo(x1, x2): | ||
y = float( | ||
(x2 - 5.1 / (4 * np.pi**2) * x1**2 + 5.0 / np.pi * x1 - 6.0) ** 2 | ||
+ 10 * (1 - 1.0 / (8 * np.pi)) * np.cos(x1) | ||
+ 10 | ||
) | ||
|
||
# second objective has x1 and x2 swapped | ||
y2 = float( | ||
(x1 - 5.1 / (4 * np.pi**2) * x2**2 + 5.0 / np.pi * x2 - 6.0) ** 2 | ||
+ 10 * (1 - 1.0 / (8 * np.pi)) * np.cos(x2) | ||
+ 10 | ||
) | ||
|
||
return {obj1_name: y, obj2_name: y2} | ||
|
||
|
||
ax_client = AxClient() | ||
|
||
ax_client.create_experiment( | ||
parameters=[ | ||
{"name": "x1", "type": "range", "bounds": [-5.0, 10.0]}, | ||
{"name": "x2", "type": "range", "bounds": [0.0, 10.0]}, | ||
], | ||
objectives={ | ||
obj1_name: ObjectiveProperties(minimize=True), | ||
obj2_name: ObjectiveProperties(minimize=True), | ||
}, | ||
) | ||
|
||
|
||
for _ in range(19): | ||
|
||
parameterization, trial_index = ax_client.get_next_trial() | ||
|
||
# extract parameters | ||
x1 = parameterization["x1"] | ||
x2 = parameterization["x2"] | ||
|
||
results = branin_moo(x1, x2) | ||
ax_client.complete_trial(trial_index=trial_index, raw_data=results) | ||
|
||
pareto_results = ax_client.get_pareto_optimal_parameters() |
53 changes: 53 additions & 0 deletions
53
...e+composition_constraint-False+categorical-False+custom_threshold-True+synchrony-batch.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
import numpy as np | ||
from ax.service.ax_client import AxClient, ObjectiveProperties | ||
|
||
obj1_name = "branin" | ||
obj2_name = "branin_swapped" | ||
|
||
|
||
def branin_moo(x1, x2): | ||
y = float( | ||
(x2 - 5.1 / (4 * np.pi**2) * x1**2 + 5.0 / np.pi * x1 - 6.0) ** 2 | ||
+ 10 * (1 - 1.0 / (8 * np.pi)) * np.cos(x1) | ||
+ 10 | ||
) | ||
|
||
# second objective has x1 and x2 swapped | ||
y2 = float( | ||
(x1 - 5.1 / (4 * np.pi**2) * x2**2 + 5.0 / np.pi * x2 - 6.0) ** 2 | ||
+ 10 * (1 - 1.0 / (8 * np.pi)) * np.cos(x2) | ||
+ 10 | ||
) | ||
|
||
return {obj1_name: y, obj2_name: y2} | ||
|
||
|
||
ax_client = AxClient() | ||
|
||
ax_client.create_experiment( | ||
parameters=[ | ||
{"name": "x1", "type": "range", "bounds": [-5.0, 10.0]}, | ||
{"name": "x2", "type": "range", "bounds": [0.0, 10.0]}, | ||
], | ||
objectives={ | ||
obj1_name: ObjectiveProperties(minimize=True, threshold=25.0), | ||
obj2_name: ObjectiveProperties(minimize=True, threshold=15.0), | ||
}, | ||
) | ||
|
||
|
||
batch_size = 2 | ||
|
||
|
||
for _ in range(19): | ||
|
||
parameterizations, optimization_complete = ax_client.get_next_trials(batch_size) | ||
for trial_index, parameterization in list(parameterizations.items()): | ||
# extract parameters | ||
x1 = parameterization["x1"] | ||
x2 = parameterization["x2"] | ||
|
||
results = branin_moo(x1, x2) | ||
ax_client.complete_trial(trial_index=trial_index, raw_data=results) | ||
|
||
pareto_results = ax_client.get_pareto_optimal_parameters() |
50 changes: 50 additions & 0 deletions
50
...+composition_constraint-False+categorical-False+custom_threshold-True+synchrony-single.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
import numpy as np | ||
from ax.service.ax_client import AxClient, ObjectiveProperties | ||
|
||
obj1_name = "branin" | ||
obj2_name = "branin_swapped" | ||
|
||
|
||
def branin_moo(x1, x2): | ||
y = float( | ||
(x2 - 5.1 / (4 * np.pi**2) * x1**2 + 5.0 / np.pi * x1 - 6.0) ** 2 | ||
+ 10 * (1 - 1.0 / (8 * np.pi)) * np.cos(x1) | ||
+ 10 | ||
) | ||
|
||
# second objective has x1 and x2 swapped | ||
y2 = float( | ||
(x1 - 5.1 / (4 * np.pi**2) * x2**2 + 5.0 / np.pi * x2 - 6.0) ** 2 | ||
+ 10 * (1 - 1.0 / (8 * np.pi)) * np.cos(x2) | ||
+ 10 | ||
) | ||
|
||
return {obj1_name: y, obj2_name: y2} | ||
|
||
|
||
ax_client = AxClient() | ||
|
||
ax_client.create_experiment( | ||
parameters=[ | ||
{"name": "x1", "type": "range", "bounds": [-5.0, 10.0]}, | ||
{"name": "x2", "type": "range", "bounds": [0.0, 10.0]}, | ||
], | ||
objectives={ | ||
obj1_name: ObjectiveProperties(minimize=True, threshold=25.0), | ||
obj2_name: ObjectiveProperties(minimize=True, threshold=15.0), | ||
}, | ||
) | ||
|
||
|
||
for _ in range(19): | ||
|
||
parameterization, trial_index = ax_client.get_next_trial() | ||
|
||
# extract parameters | ||
x1 = parameterization["x1"] | ||
x2 = parameterization["x2"] | ||
|
||
results = branin_moo(x1, x2) | ||
ax_client.complete_trial(trial_index=trial_index, raw_data=results) | ||
|
||
pareto_results = ax_client.get_pareto_optimal_parameters() |
69 changes: 69 additions & 0 deletions
69
...e+composition_constraint-False+categorical-True+custom_threshold-False+synchrony-batch.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
import numpy as np | ||
from ax.service.ax_client import AxClient, ObjectiveProperties | ||
|
||
obj1_name = "branin" | ||
obj2_name = "branin_swapped" | ||
|
||
|
||
def branin_moo(x1, x2, c1): | ||
y = float( | ||
(x2 - 5.1 / (4 * np.pi**2) * x1**2 + 5.0 / np.pi * x1 - 6.0) ** 2 | ||
+ 10 * (1 - 1.0 / (8 * np.pi)) * np.cos(x1) | ||
+ 10 | ||
) | ||
|
||
# add a made-up penalty based on category | ||
penalty_lookup = {"A": 1.0, "B": 0.0, "C": 2.0} | ||
y += penalty_lookup[c1] | ||
|
||
# second objective has x1 and x2 swapped | ||
y2 = float( | ||
(x1 - 5.1 / (4 * np.pi**2) * x2**2 + 5.0 / np.pi * x2 - 6.0) ** 2 | ||
+ 10 * (1 - 1.0 / (8 * np.pi)) * np.cos(x2) | ||
+ 10 | ||
) | ||
|
||
# add a made-up penalty based on category | ||
penalty_lookup = {"A": 0.0, "B": 2.0, "C": 1.0} | ||
y2 += penalty_lookup[c1] | ||
|
||
return {obj1_name: y, obj2_name: y2} | ||
|
||
|
||
ax_client = AxClient() | ||
|
||
ax_client.create_experiment( | ||
parameters=[ | ||
{"name": "x1", "type": "range", "bounds": [-5.0, 10.0]}, | ||
{"name": "x2", "type": "range", "bounds": [0.0, 10.0]}, | ||
{ | ||
"name": "c1", | ||
"type": "choice", | ||
"is_ordered": False, | ||
"values": ["A", "B", "C"], | ||
}, | ||
], | ||
objectives={ | ||
obj1_name: ObjectiveProperties(minimize=True), | ||
obj2_name: ObjectiveProperties(minimize=True), | ||
}, | ||
) | ||
|
||
|
||
batch_size = 2 | ||
|
||
|
||
for _ in range(21): | ||
|
||
parameterizations, optimization_complete = ax_client.get_next_trials(batch_size) | ||
for trial_index, parameterization in list(parameterizations.items()): | ||
# extract parameters | ||
x1 = parameterization["x1"] | ||
x2 = parameterization["x2"] | ||
|
||
c1 = parameterization["c1"] | ||
|
||
results = branin_moo(x1, x2, c1) | ||
ax_client.complete_trial(trial_index=trial_index, raw_data=results) | ||
|
||
pareto_results = ax_client.get_pareto_optimal_parameters() |
Oops, something went wrong.