forked from kasperpeulen/euclidthegame
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLevel12.html
69 lines (56 loc) · 14.7 KB
/
Level12.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
<!DOCTYPE html>
<html>
<head>
<title>Euclid The Game</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="stylesheet.css">
<script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script>
</head>
<body>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-51953785-1', 'auto', {'allowLinker': true});
ga('require', 'linker');
ga('linker:autoLink', ['neocities.org', 'euclidthegame.org'] );
ga('send', 'pageview');
</script>
<h1>Level 12: Find the center of the circle</h1>
<p id="level">
Go to <a href="Level13.html">level 13</a>!
</p>
<script type="text/javascript">
document.getElementById("level").style.visibility="hidden";
</script>
<script type="text/javascript" src="deployggb.js"></script>
<script type="text/javascript">
var parameters = {"id":"ggbApplet","width":550,"height":550,"showToolBar":true,"showMenuBar":false,"showAlgebraInput":false,"showResetIcon":true,"enableLabelDrags":false,"enableShiftDragZoom":false,"enableRightClick":false,"showToolBarHelp":false,"errorDialogsActive":true,"useBrowserForJS":false,"ggbBase64":"UEsDBBQACAgIAIN7z0QAAAAAAAAAAAAAAAAsAAAAOTNjYmM2OTEwNzExZjQzODJjMjE0NzQwNzQzYzlhMDlcY29tcGFzcy5naWYtkmtoEFQUx/9zBWNpOF+IH0pRi7zZitPaPliUbm4DWzK9TK2tBnEw014EPah1WcKwh8KC4BAVRlFd6UGBgRAluEI40ENv0wIJRvnBMvvQa2X/7sID9x4uB+455/f/79nY1z2neUkzgDm9PZ39NS+dOU2N9e58/ZnPgEZs3LC5CxdCAAUMcIAIQBAERTAERyAiEAVREQ3REYkEJEFSJENyJCIDWZAV2ZAdmShAERRFMRRHYf0bFFBBAx2sj9pbBCowgdeaBEgQCSrBJLgESoREkagSTaJLpCRIEkkqySS5JEqGZJGskk2yS6YUSBEpKsWkuBQKIRShCk3owjpHXVsUqjCF17E0QINoUA2mwTVQIzSKRtVoGl0jNUGTaFJNpsk1UTM0i2bVbJpdM7VAi2hRLabFtVAJpShVaUpXVgSVuBjUYAavRCzAglhQC2bBLdAiLIpFtWgW3SItwZJYUktmyS3RMiyLZbVslt0yrcCKWFErZsWt0AijGNVoRjdW+lVscajDHF7F8AAP4kE9mAf3QI/wKB7Vo3l0j/QET+JJPZkn90TP8Cye1bN5ds/0Ai/iRb2YF/dCJ5ziVKc53ckZI1Q1KpI6Vy1WKwQwCIMyGIMzkBGMwqiMxuiMZAKTMCmTMTkTmcEszMpszM5MFrAIi7IYi7PMNKtGq2pX5HXv/5tfiPeem3yxpoaH+/s24eYfT1RDNLT0dt6y+dFvP37huv4j187uWvnF3oUDd4xetrmha9Wl6z4f7D/75PYtza0TQ7uHdbXMb+lZe3fr7ub+k9/88ffB356+7f1/d6WBM1+dn5Wemrvzp862gFk/fNd96qFbv1xx/4K1S8dv+PCTA6uvH17XMXvuS01jk1u29ly+aHH3TQ/0brx9bO/UYwPzjgxdOfgzpo8vHl1l06fzpnuXPf/2mY4Hj277fsXO5Y+0T514duWGQ79Pzzt7+sYdTSNnr/l0aPLxw+ee+LXt6Pp07OA7k+fvG1nywZhPtf01vH9P+0VfH1t/IFzdt2B0YtnLx0dfaW64542OQ+PY/9EV6zreGhk7N76Iy9a8aWvO7Puz5aqFE+d2bR/see3k8t2v9s9pbP/n8L75kxf/cufWbacuad1xcIZYb1df57tr7xr9D1BLBwhmzOl+VgMAAGMEAABQSwMEFAAICAgAg3vPRAAAAAAAAAAAAAAAAC8AAABlNzI5ODBjYzc4OTIzMTcxZDQ3NjRiZmM2ODIyNjA4NlxlcXRyaWFuZ2xlLmdpZi2SX2gXVBTHv2sLa7a9NMvmg7NM0zvDOGGBJaa/USsZc+76VCF7OP2RcoiRUcJNEUpECKFxItxGZXUTHTgQ7SFZf0Q4JUm3loVIxJ76q0gPEt/uwgP3Hi4H7jnn8/2+2d/3aFtrZyuAtt7HGgM1d82em5rr3Xh/31dAM/o3DPbgegiggAEOEAEIgqAIhuAIRASiICqiIToikYAkSIpkSI5EZCALsiIbsiMTBSiCoiiG4iisf4MCKmigg/VRe4tABSbwWpMACSJBJZgEl0CJkCgSVaJJdImUBEkiSSWZJJdEyZAsklWySXbJlAIpIkWlmBSXQiGEIlShCV1Y56hri0IVpvA6lgZoEA2qwTS4BmqERtGoGk2ja6QmaBJNqsk0uSZqhmbRrJpNs2umFmgRLarFtLgWKqEUpSpN6cqKoBIXgxrM4JWIBVgQC2rBLLgFWoRFsagWzaJbpCVYEktqySy5JVqGZbGsls2yW6YVWBErasWsuBUaYRSjGs3oxkq/ii0OdZjDqxge4EE8qAfz4B7oER7Fo3o0j+6RnuBJPKkn8+Se6BmexbN6Ns/umV7gRbyoF/PiXuiEU5zqNKc7OWuEqkZFUueqxWqFAAZhUAZjcAYyglEYldEYnZFMYBImZTImZyIzmIVZmY3ZmckCFmFRFmNxltlm1WhV7Yq87v1/8+txbP8Pb9fUtGOgbxPWzkxXQ2Cmt/HI4M4LXx58uH1q5S17Rzc+t6flzJbxg0uPNm8690XLy+Nzh/4anH+po/v+O1a+8dmqD9oWPDjwy+LRQyvOjK+Yuu31Pf+cv3ZnWoi3ToSZqbnt9/hT+7s71g3NubnpyeHj966Z6Ou5fXzxS+ufX9/6eNezDwyvOrFs2eqmu0993bhw47u+674P208fOHTg5GTzyMjo9OaxIz8//eMNHy358/PG1VsnDh/e+tucsbHO/k++f++7XRs2X7zr92c+3XF22941E1d+6lp9edGVhU98M/z31rXnh7rnnd798YKxzks7H/p1+dnXWkdeXbS9449v50/+y3P73nnh4mTIr/S0TB978eosht6evsbRdVt2/wdQSwcI2i2N6CgDAAA4BAAAUEsDBBQACAgIAIN7z0QAAAAAAAAAAAAAAAAtAAAAN2UwMWVlOWRjOTVjODUwMmVlNzBkZmVkYjJlMTdhYmFcbWlkcG9pbnQucG5nAZ0BYv6JUE5HDQoaCgAAAA1JSERSAAAAIAAAACAIBgAAAHN6evQAAAFkSURBVHja7Za9SsNgFIZzC4EuyZAfklpQGggxNhoinXMH3oJTcSlegJs4uXoBLu5Kh4wuohgQimhEBHWwgz+ISn3NSVBcChaTkyWBk/BN5zk557zvJ0RRhCpDoFdVTw1QA9QApQEkSQJd1yEIAhqNBuI45gWwbRuSJEHTNMiyDEVReAGockr+HXRmBegutrG60kGrNYMwDOG6LhPA+B243EFy0EN3eSmr3PO8bCbKB3gbAWcbwPk28PHEvAXPF8DpOnCzB3yOmdfw4RA47uVfLh1wHCfrr6nJaeV94OWKV4goue/7+XpR71mV8PUW83NylrzZNJml+HEInKwBd/tTDVsxAPeDPPnoiNmMqNLr3XzY0t9fuhuSagVBkKtYZwHJIE083PzXsE0FYFkWVFWFYRjY6ofwbLOQfv8Z4LeTWe3ZiU5WGoAoij9eTr5OZsIKQGe6xVDl1I5JTlbfCWuAQgGqjC/smAHjovWdDQAAAABJRU5ErkJgglBLBwgVyoTUogEAAJ0BAABQSwMEFAAICAgAg3vPRAAAAAAAAAAAAAAAADUAAABkYWI4MmEzMzg3OGNjNzRkNTAxODdmZTZmZDc4ZGM5Y1x0cmFuc2xhdGluZyBsaW5lLnBuZwHZASb+iVBORw0KGgoAAAANSUhEUgAAACAAAAAgCAYAAABzenr0AAABoElEQVR42u2WS0sCURTHJ1u5miDtG7gQC/wAgn0ai9YuJaFNtSoKkxZBEEUbg0JEWtkiiEAIKiKrhamNNflKfI767wzOJmrGRSeFmAv3rs6553ee9wqJRAKj3IJ6jGqZAH8GoCgK/H4/7HY7IpHI8AFCoS14PB44HA4IgjB8gN2dMMbI8KTNNmSAXheQosDrIVaXl+D1ziIej38Ta0hAs8AN0C4DqQ0yfjZQtPZMADInQOESuF8niIqhmETB6La5U/C0DWSPjYOjcbWKlKUeF0A1BdytUDwzA0XTB9xFmDuhW/eo4Wu6Iqq35VvuQdQqAQ+bgHyu3whaiLstqvY8J4BqVDWu9o/BKiaBep57FD+GgcwRuaXoijTfNM+bXyv9dwDl636hNXIDL5NO+2Hne4yy5HF6n3row7geo0yvYSwWgyhOwO2ewXtyDShd6CqqIe7UtZevygQgiiJcrmlM2UQszM8ZKtYpI6Ur5v+A0+mE1WqFxTKOxWDwZ8Mv5HFDa7cOM4Asy/D5fAgEAroKlZv+gDG/ZCaACWAC/D+AUe5PvExLY34ri4UAAAAASUVORK5CYIJQSwcIgJIJdt4BAADZAQAAUEsDBBQACAgIAIN7z0QAAAAAAAAAAAAAAABEAAAAZDNkNWE4NzdlZDJjZmIyNGZlOTRmZTcwZGZkNmFhZGZcVG9vbF9TZWdtZW50X2JldHdlZW5fVHdvX1BvaW50cy5naWbrDPBz5+WS4mJgYOD19HAJAtIKIMzBDCRdlnQdY2BgZgjwCXFlYPjPwPCDgeEJA8NdBobrDAxXGBjOMzAcZmBYycAwh4FhOgNDOwNDGwNDMwNDBAODEQtLCh+fu4REhLCwi7S0n4yMq56ej56ep41NoJtbmLd3WHBwXFhYjLGxWVpa1ooVM1atmnP06I4jR7bPmNHX39/W2lq7atWiBQtmfPr04vbtSwcP7ty4cdXXr2+uXTs3d+70xsaaioqSnz8/PXly99ixA8+fP3z27MHv39/+///9///fb9++VFSU////7+/fP/+B1L9/X79+/fjx4/v379++ffv69etbt27dvHnzypUrly9f3rVr144dOzZv3rxx48apU6f29/d3d3c3NDQUFxdnZ2dnZGQkJyfHx8fHxMRER0d7enq6ubk5Ozvb2dkxjIKRBARe8dcAqRueLo4hFbeOBp/mazIQiDnlnMM8TeviC/mKT//3H2cOdDi8uinCpGpKrG2mv2+51dtzZ6KiF0xnLt40byM/ywfmhuY5y3lvR7A4z3ty89HOzcl2QesnfV7q+0vAod/4xT2GGN5/Lio1H3Y42b9ct+WqhVcCw7pTB9b/YMk2nvPUdIfgKmcT2y0tAfNk+GwXPgm5mu71ymGe1iluzT7xM2vOFc3cNFn60TJPbrWyXLM95n+NVt+YXxJ+K3mdjeS6zGQf6cedRTcfG63udNHderbFneFHFP9E/9SgU/bnjoo3T77YYL3TzGGj8FM3FpBfPV39XNY5JTQBAFBLBwhTrg8uSAIAAB0EAABQSwMEFAAICAgAg3vPRAAAAAAAAAAAAAAAABIAAABnZW9nZWJyYV9tYWNyby54bWztW21v2zgS/nz7Kwh93sh8fynqLhz3DlugvT2g/XDA5VDQEu3o1pZcS2lefv0NRSqxYydxGqd1s05RWyYpkpoZPjPPkHr928Vsir66RV1UZT8hKU6QK7MqL8pJPzlrxkc6+e3NL68nrpq40cKicbWY2aafCN/y+j6empQq7MvQRV28Kqt/2pmr5zZzH7NTN7Pvq8w2bdPTppm/6vXOz8/TrtO0Wkx6k0mTXtR5gmBCZd1P4sUr6G7lpnPWNqcYk96/P7wP3R8VZd3YMnMJgsnObLaoUDbL/ST6ybCazW1dJ6ipqumGot/ddN5PPrqpyxqUubJxCzSvirL5FTWnrgzXqCpRViyyKQxRZFX5j2IK/RiWjTJpCFaEjDnTNKOEK44VZ5mx2JxkYaB0UowTVJ9W5+/KTzDksV30k2ZxBp1l1fxyaOdeOHUs6x7hXTk/a5DF/WSQIEv6yXHS6+r+OGu6yqwthTnVcHfmO0JN0fjpwV1nzWm18Fe5bXwJtIQHncFTouZyDiXt0yVoakdu6gd688vfXvuJomr0PxBIN81Y3/7o+TZQPaym1QJB74wmaBK+RuHLTuentp94i2hbT+0lSPWrhS6uS6DDD1XuVkptWcxaQ0F140ArBKQ2dy5vr8KE4WIO3bUGOrbTOs4nq6pFXqMLPygFBSihDWOSCc1Ugi77CU2NVEoYgbEWWFPNE3QVTL7toBXEx+IqTogtlzaX0+V5vu5FGT4gzeMXIE2aCsIEF9gwYTCXJkiTpVgIiY2KH2onwoTlMrNljsqwSsN683cWt5fCRzfx9/xn8Cs6/m+U4e0l0YvdrWkJ1kqRXWshe0BLS2JZVhMVotUTxbxVFMFP0NS0KF0QTHNaZH+WrgYwoJ2ScLj4vchz51E63OOKiSu/wnyrRQ2wiyN8X+IwPrrqSi5AXkdt0SWJRVdkSVlgI4viAg269oOu1YB6RQvKjTRaKVhMTHv9D1gcYsDbntfX20BAxYYVFyb+pQzPWvvPfgI2mRXjIrttDb1lTPO/W+RbB/i/fzkrpgBvCzuFB7HlxIP0DdgvVaPV+hXkb86rAPX1MsI7RY3GWaa0oYwoknMl+WicSU2pxFqeuC9dn88K8sNQaeELlDKCL9CBOyD/ClaBKWqsiQF7JAyDtihtwQrCE0GxL9dcG653A1YvHflBmlJQbQSB9Uu4YDxIE6fKcI4J1MGSN8SIZ8D+iO+bwf94DfDt/YBfx9468ds9gPwbQfOUCCWJksoAWIIvFVHORAgK0KswmCxRGgdBg0c2hEAALBnVmEKLb/chIMKpN4F3PuqtXYshdZjmkgz+dG7+CW7+o/y0sGXtOUBo05nxPT48Rtpb6vGpjjtM+uC5vedWqZZgV1JxCW5ZSn7LcW8Cy9Zvr8Plo9z2NgZwHAxgsGYA+WMMID8YwH0GcERkSgU8rCREAowLsm4C6wjfmsAGjH+CDVyjyy0ryIIV5CGoIWvGMLzfGFZd7vAHu9xlyqQVxhAPcyYNh3+io0xYKUy4wVRCFfnufnO4JuHR4/zmaK/8JknBRiEoVwSCcUGo4FHOUmn47SVtpJREtnL2qwHEzrSClQCoxvkeu83Nahze5Tbd49To9kqNNKWEUQO6IgxCnRhlHnniSY3gUCIw6IsFNfKU+mVFfThkGCF7pcRtGeuHIo/gdUNTV8tWqKkrQ1WNxotqhizyj5su01TlMHHO5JkRGXBt6pzC+djlI+qIsiN7Mou9p/Ny8owk9cBHVxgUSRl4XQU+AEstqVLBtklKGZPUMM0pVPFo2gdCer84SSpBhhQb8J3cKMVElCZQJ6k1oL6RmDB+4KNPA2S4VUDgghUWjDGDDRZdBl2BjIVWEtAYCxwdKyC10QrIqNSgHi3NXmHyqh7fw6SOi7oNvbdV5gNBkn/OJ0dIXoOTqMFR1OzTNXm0SWWXd2j4ypdzrrXwUT8RgEviKbmF21yhmM2nRVY038YVRl0C9IWQBJIKToSA1WIU6IGYELwSoGSGeIhjwNmBgbV60cAoCMF+qwWIOVbsSci2bZTSLi6fObfBxG9ileuaGIs8HLP4VnE/tYLPuMO6EsPkdqSp9QG6zjLFc4GJVmMnx7nSENhkJ00cFfAhREC7imVa+jncGNK8DW0OmfY1YOE6QgnVh+hlu3R6JKiAsrsJ+P66IQoIk+gY/ZmwkQ9FRu9ZLnyfXdGuNtxizuU5DgD8lZJZEEXzjh3KgKhH2ifi98qg14PpzYn90ZpyHtjZWQmiv/VExjMF0Rs0Q1NJvn9svEHew7vC4gc2UlbkvWEf5UfKewO2q5TRJ6yE3VKR622L2zJ/+xgq8nZvqIhKKdH+eFf3F9g+T4EjKkJbDciUMcqfHdujOb9dE+1PneH2Fq3M8t91InBHBv4Dc9mdIpfoYSxCI9ecO2B8n84r9K94tGrLc1c5y4XVSrmcZuMR5WNn4L9PaufS2nx84gnf5zjQ5zjQZxjocxjoWQ9j2QMbPOS5D3nun51Evqw897Z4HQ/k0A3vQ9B74dm/+4EWNi/O6pjJCy9LpD/0jYh7cncv+cUIiCgOabvvJLTdJ+5+przQNwvtOTNDt7Ym7vBWN9hwi6bd5CgObG0rE93z3NnPyK+2OSZ7Jx0+vOC0s1OyBOCdcXzzR9fPScdTsR7LNuaTHv0GU6979/XN/wFQSwcIOcQKPtQHAACCOwAAUEsDBBQACAgIAIN7z0QAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc+VXyW7bMBA9118x5SGRYMeGz4YLpEUPAQrk0KKXogctY4kNTbki5cSo/e/liKIWW5az3NqLI5Fv3ixvOFRWhYw0zyQkSXgv7yTXng9/RkDvt5uNQD2NMSwSj9UA5i86+zkmXGnMb+P4Cz1IzD0m8fE+/IWRdktkdRiNVs7fCcDLwl/W9WwGOuUKHFZBFEiIUoweIBACEoIHArLSXhmLmrUE2XVPB3mCegKGfmOJAfgKyA+8XwJbcclVijFzmwDbIIdoHUNr1zx7DMbkzPyypdkyfy03LfhsURkfV8wQ+ad7uA3Ep2y9DmTcQbT8NWDj43sgCvyqcy6NBk3IzowScqtTLmN8ul95TOcFmrQ+wM28Sa4dhTLEXPFQoEflmQBZ1KSHkfs99MtRSiG4RFCYrFH2iFBtnFWhk6TthG+7DdouoCpXBC11ZrOEb1FBaBpObjIuNZgqAlbP2arqiJaYdsFK2vFYSVAVlpwuRu8qmw3KMA+iByPwsmGoq3v949o3ys9rg4i4+qGT64Y3EpnCQeKfLXSTpAV2LFQRqiryJtiJDaShQBlfJrDBm3QmnQDrXjhb9LiuupW4VXW7cLHqFuYvoL/yNcvlyvdAByrfg+6vfHXK2xYvq/wgweXKp5gjcF0dKDo2jlhR3dsHEAIDxd9FIFqDYWDSnZl1nuex8XHrjc3Ua6/aZMbM3+/PorsVMFj/6oq4uz05zNyHPeVtBvDwCH7OEH71GH7hIH7+KHbD+HgoD16S/Kg30kBBzpNUQ8xzLOHn5nUNePvghv0eLoIpTva229l0ijEaM2/uU4e4zjCv1HNu8+Zo17z7//7dPXR/G/c6RfoQAzvKDcZ0A63ZKpE2J31iT6S0iNc3SUnzRuFbaj45nX2j8q55+U8ELi+KXVYcfShXH8gw6nwXM1u1OZswop/beGezx5RHaalkeZlIjCJUQb4DndH9RqEhCNwiXTEnIruIHSe43HrzYo6QdbKLs6ig2UGEnwXS48fdXeyx0i3zp0rvBE63xMIF17sl21rGUuiD+Q/jL1BLBwgH5W55DAMAANEMAABQSwMEFAAICAgAg3vPRAAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzdWElz2zYUPqe/AuWhJ0sCCIJLKqXjpJNpZ5xOpu5+g0hIQk0RLAnJkic/vg8LKVKOkzjOodNJbBDAw1u+twGef3fYlmgvmlaqahGQKQ6QqHJVyGq9CHZ6NUmD7158NV8LtRbLhqOVarZcLwJmKPtz0TSbhgk2a7JYBGJJV+EqXU7CKCOTKFrmk4zzfIJTlqd4RVlB0gChQyufV+onvhVtzXNxnW/Ell+pnGvLdKN1/Xw2u729nXbip6pZz9br5fTQFgEC1at2EfiP58BudOiWWvIQYzL7482VYz+RVat5lYsAGbN28sVXz+a3sirULbqVhd4sgoTGAdoIud4YOwlMZoaoBmNrkWu5Fy0cHUytzXpbB5aMV2b/mftCZW9OgAq5l4VoFgGexlmCCU7jjMUsJEkUINVIUWlPS7zMWcdtvpfi1rE1X1ZihLMEfCBbuSzFIljxsgWrZLVqAFFQqNnBtNXHUix5081P+pAL+AcE8k4YXuA6BwMAkIYXYcguEowvGMNOl6HgAGmlSssVI5ahd+9QiEOMLsxA3BDCEMduC7s1TN0QuiFyA3M0kTseOdLI0USOJqIfsNPPT4b6hZGlnZ10aCcB+8xPDD8WgDM704GdxBjxDhGjvR0oMnoTq78ZIj+N3TSxA8FuIH4zNb8sXvETLaK951j06RaRgVQXDw8LPY+XXmISPgLD8CkR2kmEcDpJZGl2QcP4ImQP2PhEaDuhhA3MBFn2v/25J5J+yMqPAvs5EuPoS+D6CIEJHiV9l/FuJH78Is5+hFKMPAr4h309KgvvkTmfdfV37kFA7cbQ+iTSYguNiCHWFQlTFkjafRM3xN3clJCsm1D4gOKBaLcArq1VK52KzLSisu4kWWVkVe/0SIF8W3SfWtW9pZa6UPnNy15hvyN4qwc8odGc2plrPKNu92xe8qUo4VJwbdBEaM9LUxGsgJWqNOqcF7q1dcPrjczba6E1nGrR33zPr7gWh9dA3XZ6WNG2Cc/FLi9lIXn1GyBtWBiGqO/JpuZ0PZlChFgpuVJNcX1sAX50+Es0CkoFiaaMUQjGKMkoTTMA8Oi3smRKwhRnGUkoY5Hxfs5LW0OngyNpBB44PrAVO8li31vGD6K3B60bE5eDyY/tS1WelmolK/2K13rX2BsWFNXGGHVZrUthsbVRCVeV/GapDtcOVOp4/XKsYeZtX65fqVI1COI6ZGDk2o9LN1oao1pPhS0NthS485Is+n2ShZbCjks3Wipwu1PNm0o6MwnuxMjW5iMwH0WZDRpz89lVUl91Ey3zm5Op5sBPu+0S4s0H5Jgn+VI857OzEJvz0l4qu4Dju4MsJW+Ow9SyB0eE8xvRVKJ08VdBDOzUrnUJ0Qf1s/muFW+53lxWxc9iDZn8lpuipEEjR3qytBC53MJBt+4x5yYefgUL3Woh1o3okHHKOI/Y3VE23Fu2rF43avtjtf8Fgu1M1fmss2fe5o2sTVCjJdTIG3EK20K2HGpsMTw3QpN+/0A+2jfBcfB9574nZMr6/GN252CTwHR7S+dnk9hMH4gz30RcFBwejgn8iDgb8Tw+iWf4Xp53n8OzLqF4ngWmS+B7i59SGcB1dW08DXHa9+aBqr6ae9mN+tu0AlUhfSpBZ/lkIsAkRAsMPK3UxqYrsRclIuFz9BoaLNIbgXJ46YgGqZWbySYvQSbf6Y1q7EMJbAXp6A0/wrUCyp8Jt1Js4ZjXwNbRHlHNm7XQxL6/jBVILY3C5zXjBBHs9xhRV/aoq3pm4GW94S5cXQHkR9B2mFOW4RtVnGcaJLI1HTKgdiFVC+GCy+kNH+DJo639g2phE6dFByM0xEmUwCWX0piylMIT7wiOm2ZxkrAMbiQpw2mYQou6c+915yKDh+kWo87sVs8qAvjNQfkRUDcv/w94hlNGKIsYzijLcBRnDk86xYzF8ID2v5IvAmeutlsOMV7Z++crta152wanKxvHp1hFnFiMHX473e3njqlndc9HkGEy7z2Q33fRqNQMIBm6qC8L5q5pWj1+gpdO1wMNN76bSrStrXxdqbAfP8iiEFVfUeAiJ6o96KugH6ID9n95OuKuSXQrBwBp4noI8Ut3ZOAoiI9GHtBlR3/ZUV2GxsksjLI4S5MEUgnuguDlS+pFXEaW8/1su2Sw8Z58c4r/UzlbW1ewzR1ZrmR+L7EOdQNAmNj1rjAhDF6HjUXwzT87pb/9XZQlKlQlvnZz11VH3ob78ikhHYeP5OQDHh9f/j7b1y1Er35r0gCZ5AL8ADOSxBGmKUtwTH2xAjCTNM2yGIcAIRkm14dRgrCvS7gmjYD6U+1Qt1Gg0veTT0St5/ifAo5MCQ3DCEfwGIngPZKmvixBNEYUMxKTmMWmeL4fudmw09pHlP8L6Yt/AVBLBwjWGghL/gYAANIVAABQSwECFAAUAAgICACDe89EZszpflYDAABjBAAALAAAAAAAAAAAAAAAAAAAAAAAOTNjYmM2OTEwNzExZjQzODJjMjE0NzQwNzQzYzlhMDlcY29tcGFzcy5naWZQSwECFAAUAAgICACDe89E2i2N6CgDAAA4BAAALwAAAAAAAAAAAAAAAACwAwAAZTcyOTgwY2M3ODkyMzE3MWQ0NzY0YmZjNjgyMjYwODZcZXF0cmlhbmdsZS5naWZQSwECFAAUAAgICACDe89EFcqE1KIBAACdAQAALQAAAAAAAAAAAAAAAAA1BwAAN2UwMWVlOWRjOTVjODUwMmVlNzBkZmVkYjJlMTdhYmFcbWlkcG9pbnQucG5nUEsBAhQAFAAICAgAg3vPRICSCXbeAQAA2QEAADUAAAAAAAAAAAAAAAAAMgkAAGRhYjgyYTMzODc4Y2M3NGQ1MDE4N2ZlNmZkNzhkYzljXHRyYW5zbGF0aW5nIGxpbmUucG5nUEsBAhQAFAAICAgAg3vPRFOuDy5IAgAAHQQAAEQAAAAAAAAAAAAAAAAAcwsAAGQzZDVhODc3ZWQyY2ZiMjRmZTk0ZmU3MGRmZDZhYWRmXFRvb2xfU2VnbWVudF9iZXR3ZWVuX1R3b19Qb2ludHMuZ2lmUEsBAhQAFAAICAgAg3vPRDnECj7UBwAAgjsAABIAAAAAAAAAAAAAAAAALQ4AAGdlb2dlYnJhX21hY3JvLnhtbFBLAQIUABQACAgIAIN7z0QH5W55DAMAANEMAAAWAAAAAAAAAAAAAAAAAEEWAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAg3vPRNYaCEv+BgAA0hUAAAwAAAAAAAAAAAAAAAAAkRkAAGdlb2dlYnJhLnhtbFBLBQYAAAAACAAIAKUCAADJIAAAAAA=","language":"en","isPreloader":false,"screenshotGenerator":false,"preventFocus":false};
/** is3D=is 3D applet using 3D view, AV=Algebra View, SV=Spreadsheet View, CV=CAS View, EV2=Graphics View 2, CP=Construction Protocol, PC=Probability Calculator, DA=Data Analysis, FI=Function Inspector, PV=Python, macro=Macro View */
var views = {"is3D":false,"AV":false,"SV":false,"CV":false,"EV2":false,"CP":false,"PC":false,"DA":false,"FI":false,"PV":false,"macro":true};
var applet = new GGBApplet('5.0', parameters, views);
applet.setPreviewImage('http://www.geogebratube.org/files/material-126072.png', 'http://vimeoid.googlecode.com/hg-history/c4d7946c64cbf6518de0d81a1c9d8cb4637d64ca/mockup/item.loading.svg');
var appletType_125509 = 'preferhtml5';
window.onload = function() {
applet.inject('applet_container', 'preferhtml5');
}
</script>
<div style="display:block;min-width:550px;min-height:550px" id="applet_container">
</div>
<script type="text/javascript">
var tmpOnLoad = window.onload;
window.onload = function() {
if (typeof tmpOnLoad == "function")
tmpOnLoad();
applet.toggleAppletTypeControls("");
}
</script> <div id="footer"></div>
<script type="text/javascript">
$(function()
{
$("#footer").load("footer.html");
});
</script>
</body>
</html>