Skip to content

scsnl/Strock_SciAdv_2024

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Strock_bioRxiv_2024

In this project we use artificial neural networks to model Mathematical Learning Deficit (MD) in children as resulting from an higher excitability level of neurons. We use the structure CORnet without any pre-training, and we train it to solve addition and subtraction visually presented.

Setting up environment

source environment.sh

Generation of the addition/subtraction dataset

submit8c dataset/addsub18_handwritten.py
submit8c dataset/addsub18_font.py
submit1c dataset/behavior_addsub18.py

Model

Training the model

submit1g "model/train.py --scale 1.0"

Testing the model

submit1g "model/test.py --scale 1.0 --saveall --step $(seq -s ' ' 0 100 3800)"

Representational similarity analysis

submit8c analysis/similarity_analysis/addsub_similarity.py  --time 1-00:00:00

Behavioral analysis

submit8c analysis/behavioral_analysis/numberline_entropy.py

Manifold analysis

submit8c analysis/manifold_analysis/step_manifold.py --psteps $(seq -s ' ' 0 100 3800) --time 2-00:00:00 -p owners,normal --pmax 20 --mem 20G -c 32

Manuscript Figures

To obtain Figure X of manuscript

python paper/figureX.py

To obtain Figure SI X of manuscript

python paper/figureSX.py

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published