In this project we use artificial neural networks to model Mathematical Learning Deficit (MD) in children as resulting from an higher excitability level of neurons. We use the structure CORnet without any pre-training, and we train it to solve addition and subtraction visually presented.
source environment.sh
submit8c dataset/addsub18_handwritten.py
submit8c dataset/addsub18_font.py
submit1c dataset/behavior_addsub18.py
Training the model
submit1g "model/train.py --scale 1.0"
Testing the model
submit1g "model/test.py --scale 1.0 --saveall --step $(seq -s ' ' 0 100 3800)"
Representational similarity analysis
submit8c analysis/similarity_analysis/addsub_similarity.py --time 1-00:00:00
Behavioral analysis
submit8c analysis/behavioral_analysis/numberline_entropy.py
Manifold analysis
submit8c analysis/manifold_analysis/step_manifold.py --psteps $(seq -s ' ' 0 100 3800) --time 2-00:00:00 -p owners,normal --pmax 20 --mem 20G -c 32
To obtain Figure X of manuscript
python paper/figureX.py
To obtain Figure SI X of manuscript
python paper/figureSX.py