-
Notifications
You must be signed in to change notification settings - Fork 85
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
108 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,108 @@ | ||
""" | ||
Mixins for Hypothesis Testing. | ||
""" | ||
from .. import get_backend | ||
from .test_statistics import qmu | ||
from .calculators import AsymptoticTestStatDistribution, EmpiricalDistribution | ||
|
||
|
||
class Calculator(object): | ||
def __init__( | ||
self, data, pdf, init_pars=None, par_bounds=None, qtilde=False, ntoys=2000 | ||
): | ||
self.data = data | ||
self.pdf = pdf | ||
self.init_pars = init_pars or pdf.config.suggested_init() | ||
self.par_bounds = par_bounds or pdf.config.suggested_bounds() | ||
self.qtilde = qtilde | ||
self.distribution = None | ||
|
||
# TODO: better names??? | ||
# for Asymptotics, it is self.sqrtqmuA_v | ||
# for Toys, it is signal/bkg qtilde | ||
self.something_signal = None | ||
self.something_bkg = None | ||
|
||
# toys | ||
self.ntoys = ntoys | ||
|
||
def distributions(self, poi_test): | ||
if self.something_signal is None or self.something_bkg is None: | ||
raise RuntimeError('need to call .teststatistic(poi_test) first') | ||
|
||
if self.distribution is None: | ||
raise RuntimeError('need to call this from a mixin\'d class') | ||
|
||
s_plus_b = self.distribution(signal_qtilde) | ||
b_only = self.distribution(bkg_qtilde) | ||
return s_plus_b, b_only | ||
|
||
|
||
class AsymptoticCalculator(Calculator): | ||
def __init__(self, *args, **kwargs): | ||
super(AsymptoticCalculator, self).__init__(*args, **kwargs) | ||
self.distribution = AsymptoticTestStatDistribution | ||
|
||
def teststatistic(self, poi_test): | ||
tensorlib, _ = get_backend() | ||
qmu_v = qmu(poi_test, self.data, self.pdf, self.init_pars, self.par_bounds) | ||
sqrtqmu_v = tensorlib.sqrt(qmu_v) | ||
|
||
asimov_mu = 0.0 | ||
asimov_data = generate_asimov_data( | ||
asimov_mu, self.data, self.pdf, self.init_pars, self.par_bounds | ||
) | ||
qmuA_v = qmu(poi_test, asimov_data, self.pdf, self.init_pars, self.par_bounds) | ||
self.something_signal = -tensorlib.sqrt(qmuA_v) | ||
self.something_bkg = 0.0 | ||
|
||
if not self.qtilde: # qmu | ||
teststat = sqrtqmu_v + self.something_signal | ||
else: # qtilde | ||
|
||
def _true_case(): | ||
teststat = sqrtqmu_v + self.something_signal | ||
return teststat | ||
|
||
def _false_case(): | ||
qmu = tensorlib.power(sqrtqmu_v, 2) | ||
qmu_A = tensorlib.power(self.something_signal, 2) | ||
teststat = (qmu_A - qmu) / (2 * self.something_signal) | ||
return teststat | ||
|
||
teststat = tensorlib.conditional( | ||
(sqrtqmu_v < self.something_signal), _true_case, _false_case | ||
) | ||
return teststat | ||
|
||
|
||
class ToyCalculator(Calculator): | ||
def __init__(self, *args, **kwargs): | ||
super(AsymptoticCalculator, self).__init__(*args, **kwargs) | ||
self.distribution = EmpiricalDistribution | ||
|
||
def teststatistic(self, poi_test): | ||
tensorlib, _ = get_backend() | ||
sample_shape = (self.ntoys,) | ||
|
||
signal_pars = [*self.init_pars] | ||
signal_pars[self.pdf.config.poi_index] = poi_test | ||
signal_pdf = self.pdf.make_pdf(tensorlib.astensor(signal_pars)) | ||
signal_sample = signal_pdf.sample(sample_shape) | ||
|
||
bkg_pars = [*self.init_pars] | ||
bkg_pars[self.pdf.config.poi_index] = 0.0 | ||
bkg_pdf = self.pdf.make_pdf(tensorlib.astensor(bkg_pars)) | ||
bkg_sample = bkg_pdf.sample(sample_shape) | ||
|
||
self.qtilde_signal = tensorlib.astensor( | ||
qmu(poi_test, sample, self.pdf, signal_pars, self.par_bounds) | ||
for sample in signal_sample | ||
) | ||
self.qtilde_bkg = tensorlib.astensor( | ||
qmu(poi_test, sample, self.pdf, bkg_pars, self.par_bounds) | ||
for sample in bkg_sample | ||
) | ||
|
||
qmu_v = qmu(poi_test, self.data, self.pdf, self.init_pars, self.par_bounds) | ||
return qmu_v |