Skip to content

Commit

Permalink
add mixin idea
Browse files Browse the repository at this point in the history
  • Loading branch information
kratsg committed Mar 5, 2020
1 parent f232b96 commit 74161b7
Showing 1 changed file with 108 additions and 0 deletions.
108 changes: 108 additions & 0 deletions src/pyhf/infer/mixins.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
"""
Mixins for Hypothesis Testing.
"""
from .. import get_backend
from .test_statistics import qmu
from .calculators import AsymptoticTestStatDistribution, EmpiricalDistribution


class Calculator(object):
def __init__(
self, data, pdf, init_pars=None, par_bounds=None, qtilde=False, ntoys=2000
):
self.data = data
self.pdf = pdf
self.init_pars = init_pars or pdf.config.suggested_init()
self.par_bounds = par_bounds or pdf.config.suggested_bounds()
self.qtilde = qtilde
self.distribution = None

# TODO: better names???
# for Asymptotics, it is self.sqrtqmuA_v
# for Toys, it is signal/bkg qtilde
self.something_signal = None
self.something_bkg = None

# toys
self.ntoys = ntoys

def distributions(self, poi_test):
if self.something_signal is None or self.something_bkg is None:
raise RuntimeError('need to call .teststatistic(poi_test) first')

if self.distribution is None:
raise RuntimeError('need to call this from a mixin\'d class')

s_plus_b = self.distribution(signal_qtilde)
b_only = self.distribution(bkg_qtilde)
return s_plus_b, b_only


class AsymptoticCalculator(Calculator):
def __init__(self, *args, **kwargs):
super(AsymptoticCalculator, self).__init__(*args, **kwargs)
self.distribution = AsymptoticTestStatDistribution

def teststatistic(self, poi_test):
tensorlib, _ = get_backend()
qmu_v = qmu(poi_test, self.data, self.pdf, self.init_pars, self.par_bounds)
sqrtqmu_v = tensorlib.sqrt(qmu_v)

asimov_mu = 0.0
asimov_data = generate_asimov_data(
asimov_mu, self.data, self.pdf, self.init_pars, self.par_bounds
)
qmuA_v = qmu(poi_test, asimov_data, self.pdf, self.init_pars, self.par_bounds)
self.something_signal = -tensorlib.sqrt(qmuA_v)
self.something_bkg = 0.0

if not self.qtilde: # qmu
teststat = sqrtqmu_v + self.something_signal
else: # qtilde

def _true_case():
teststat = sqrtqmu_v + self.something_signal
return teststat

def _false_case():
qmu = tensorlib.power(sqrtqmu_v, 2)
qmu_A = tensorlib.power(self.something_signal, 2)
teststat = (qmu_A - qmu) / (2 * self.something_signal)
return teststat

teststat = tensorlib.conditional(
(sqrtqmu_v < self.something_signal), _true_case, _false_case
)
return teststat


class ToyCalculator(Calculator):
def __init__(self, *args, **kwargs):
super(AsymptoticCalculator, self).__init__(*args, **kwargs)
self.distribution = EmpiricalDistribution

def teststatistic(self, poi_test):
tensorlib, _ = get_backend()
sample_shape = (self.ntoys,)

signal_pars = [*self.init_pars]
signal_pars[self.pdf.config.poi_index] = poi_test
signal_pdf = self.pdf.make_pdf(tensorlib.astensor(signal_pars))
signal_sample = signal_pdf.sample(sample_shape)

bkg_pars = [*self.init_pars]
bkg_pars[self.pdf.config.poi_index] = 0.0
bkg_pdf = self.pdf.make_pdf(tensorlib.astensor(bkg_pars))
bkg_sample = bkg_pdf.sample(sample_shape)

self.qtilde_signal = tensorlib.astensor(
qmu(poi_test, sample, self.pdf, signal_pars, self.par_bounds)
for sample in signal_sample
)
self.qtilde_bkg = tensorlib.astensor(
qmu(poi_test, sample, self.pdf, bkg_pars, self.par_bounds)
for sample in bkg_sample
)

qmu_v = qmu(poi_test, self.data, self.pdf, self.init_pars, self.par_bounds)
return qmu_v

0 comments on commit 74161b7

Please sign in to comment.