-
Notifications
You must be signed in to change notification settings - Fork 85
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
3d200b2
commit 6ed478c
Showing
4 changed files
with
239 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
from __future__ import annotations | ||
import pyhf | ||
from pyhf.parameters import ParamViewer | ||
from pyhf import get_backend | ||
from pyhf import events | ||
|
||
from typing import Sequence, Callable, Any | ||
|
||
|
||
class BaseApplier: | ||
... | ||
|
||
|
||
class BaseBuilder: | ||
... | ||
|
||
|
||
def _allocate_new_param( | ||
p: dict[str, Sequence[float]] | ||
) -> dict[str, str | bool | int | Sequence[float]]: | ||
return { | ||
'paramset_type': 'unconstrained', | ||
'n_parameters': 1, | ||
'is_shared': True, | ||
'inits': p['inits'], | ||
'bounds': p['bounds'], | ||
'is_scalar': True, | ||
'fixed': False, | ||
} | ||
|
||
|
||
def make_func(expression: str, deps: list[str]) -> Callable[[Sequence[float]], Any]: | ||
def func(d: Sequence[float]) -> Any: | ||
import numexpr as ne | ||
|
||
return ne.evaluate(expression, local_dict=dict(zip(deps, d))) | ||
|
||
return func | ||
|
||
|
||
def make_builder( | ||
funcname: str, deps: list[str], newparams: dict[str, dict[str, Sequence[float]]] | ||
) -> BaseBuilder: | ||
class _builder(BaseBuilder): | ||
def __init__(self, config): | ||
self.builder_data = {'funcs': {}} | ||
self.config = config | ||
|
||
def collect(self, thismod, nom): | ||
maskval = True if thismod else False | ||
mask = [maskval] * len(nom) | ||
return {'mask': mask} | ||
|
||
def append(self, key, channel, sample, thismod, defined_samp): | ||
self.builder_data.setdefault(key, {}).setdefault(sample, {}).setdefault( | ||
'data', {'mask': []} | ||
) | ||
nom = ( | ||
defined_samp['data'] | ||
if defined_samp | ||
else [0.0] * self.config.channel_nbins[channel] | ||
) | ||
moddata = self.collect(thismod, nom) | ||
self.builder_data[key][sample]['data']['mask'] += moddata['mask'] | ||
if thismod: | ||
if thismod['name'] != funcname: | ||
print(thismod) | ||
self.builder_data['funcs'].setdefault( | ||
thismod['name'], thismod['data']['expr'] | ||
) | ||
self.required_parsets = { | ||
k: [_allocate_new_param(v)] for k, v in newparams.items() | ||
} | ||
|
||
def finalize(self): | ||
return self.builder_data | ||
|
||
return _builder | ||
|
||
|
||
def make_applier( | ||
funcname: str, deps: list[str], newparams: dict[str, dict[str, Sequence[float]]] | ||
) -> BaseApplier: | ||
class _applier(BaseApplier): | ||
name = funcname | ||
op_code = 'multiplication' | ||
|
||
def __init__(self, modifiers, pdfconfig, builder_data, batch_size=None): | ||
self.funcs = [make_func(v, deps) for v in builder_data['funcs'].values()] | ||
|
||
self.batch_size = batch_size | ||
pars_for_applier = deps | ||
_modnames = [f'{mtype}/{m}' for m, mtype in modifiers] | ||
|
||
parfield_shape = ( | ||
(self.batch_size, pdfconfig.npars) | ||
if self.batch_size | ||
else (pdfconfig.npars,) | ||
) | ||
self.param_viewer = ParamViewer( | ||
parfield_shape, pdfconfig.par_map, pars_for_applier | ||
) | ||
self._custommod_mask = [ | ||
[[builder_data[modname][s]['data']['mask']] for s in pdfconfig.samples] | ||
for modname in _modnames | ||
] | ||
self._precompute() | ||
events.subscribe('tensorlib_changed')(self._precompute) | ||
|
||
def _precompute(self): | ||
tensorlib, _ = get_backend() | ||
if not self.param_viewer.index_selection: | ||
return | ||
self.custommod_mask = tensorlib.tile( | ||
tensorlib.astensor(self._custommod_mask), | ||
(1, 1, self.batch_size or 1, 1), | ||
) | ||
self.custommod_mask_bool = tensorlib.astensor( | ||
self.custommod_mask, dtype="bool" | ||
) | ||
self.custommod_default = tensorlib.ones(self.custommod_mask.shape) | ||
|
||
def apply(self, pars): | ||
""" | ||
Returns: | ||
modification tensor: Shape (n_modifiers, n_global_samples, n_alphas, n_global_bin) | ||
""" | ||
if not self.param_viewer.index_selection: | ||
return | ||
tensorlib, _ = get_backend() | ||
if self.batch_size is None: | ||
deps = self.param_viewer.get(pars) | ||
print('deps', deps.shape) | ||
results = tensorlib.astensor([f(deps) for f in self.funcs]) | ||
results = tensorlib.einsum('msab,m->msab', self.custommod_mask, results) | ||
else: | ||
deps = self.param_viewer.get(pars) | ||
print('deps', deps.shape) | ||
results = tensorlib.astensor([f(deps) for f in self.funcs]) | ||
results = tensorlib.einsum( | ||
'msab,ma->msab', self.custommod_mask, results | ||
) | ||
results = tensorlib.where( | ||
self.custommod_mask_bool, results, self.custommod_default | ||
) | ||
return results | ||
|
||
return _applier | ||
|
||
|
||
def add_custom_modifier( | ||
funcname: str, deps: list[str], newparams: dict[str, dict[str, Sequence[float]]] | ||
) -> dict[str, tuple[BaseBuilder, BaseApplier]]: | ||
|
||
_builder = make_builder(funcname, deps, newparams) | ||
_applier = make_applier(funcname, deps, newparams) | ||
|
||
modifier_set = {_applier.name: (_builder, _applier)} | ||
modifier_set.update(**pyhf.modifiers.histfactory_set) | ||
return modifier_set |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
import pyhf | ||
import pyhf.experimental.modifiers | ||
|
||
|
||
def test_add_custom_modifier(backend): | ||
tensorlib, _ = backend | ||
|
||
new_params = { | ||
'm1': {'inits': (1.0,), 'bounds': ((-5.0, 5.0),)}, | ||
'm2': {'inits': (1.0,), 'bounds': ((-5.0, 5.0),)}, | ||
} | ||
|
||
expanded_pyhf = pyhf.experimental.modifiers.add_custom_modifier( | ||
'customfunc', ['m1', 'm2'], new_params | ||
) | ||
model = pyhf.Model( | ||
{ | ||
'channels': [ | ||
{ | ||
'name': 'singlechannel', | ||
'samples': [ | ||
{ | ||
'name': 'signal', | ||
'data': [10] * 20, | ||
'modifiers': [ | ||
{ | ||
'name': 'f2', | ||
'type': 'customfunc', | ||
'data': {'expr': 'm1'}, | ||
}, | ||
], | ||
}, | ||
{ | ||
'name': 'background', | ||
'data': [100] * 20, | ||
'modifiers': [ | ||
{ | ||
'name': 'f1', | ||
'type': 'customfunc', | ||
'data': {'expr': 'm1+(m2**2)'}, | ||
}, | ||
], | ||
}, | ||
], | ||
} | ||
] | ||
}, | ||
modifier_set=expanded_pyhf, | ||
poi_name='m1', | ||
validate=False, | ||
batch_size=1, | ||
) | ||
|
||
assert tensorlib.tolist(model.expected_actualdata([[1.0, 2.0]])) == [ | ||
[ | ||
510.0, | ||
510.0, | ||
510.0, | ||
510.0, | ||
510.0, | ||
510.0, | ||
510.0, | ||
510.0, | ||
510.0, | ||
510.0, | ||
510.0, | ||
510.0, | ||
510.0, | ||
510.0, | ||
510.0, | ||
510.0, | ||
510.0, | ||
510.0, | ||
510.0, | ||
510.0, | ||
] | ||
] |