Skip to content

Commit

Permalink
Update index.md
Browse files Browse the repository at this point in the history
  • Loading branch information
mtian8 authored Jul 14, 2024
1 parent d305806 commit 35daad9
Showing 1 changed file with 20 additions and 33 deletions.
53 changes: 20 additions & 33 deletions docs/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -227,40 +227,27 @@ from math import pi, sin, cos, sqrt

**_Scientists Annotated Background:_**
Source: Haldane, F. D. M. (1988). Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the" parity anomaly". Physical review letters, 61(18).
We denote $\{\mathbf{a}_i\}$ are the vectors from a B site to its three nearest-neighbor A sites, and $\{\mathbf{b}_i\}$ are next-nearest-neighbor distance vectors, then we have
\[
\begin{aligned}
\mathbf{a}_1 &= (0,a), \\
\mathbf{a}_2 &= \left(\frac{\sqrt{3}a}{2}, -\frac{a}{2}\right), \\
\mathbf{a}_3 &= \left(-\frac{\sqrt{3}a}{2}, -\frac{a}{2}\right)
\end{aligned}
\]
\[
\begin{aligned}
\mathbf{b}_1 &= \mathbf{a}_2 - \mathbf{a}_3 = (\sqrt{3}a,0), \\
\mathbf{b}_2 &= \mathbf{a}_3 - \mathbf{a}_1 = \left(-\frac{\sqrt{3}a}{2}, -\frac{3a}{2}\right), \\
\mathbf{b}_3 &= \mathbf{a}_1 - \mathbf{a}_2 = \left(-\frac{\sqrt{3}a}{2},\frac{3a}{2}\right)
\end{aligned}
\]
\\

We denote $\{\mathbf{a}_i\}$ are the vectors from a B site to its three nearest-neighbor A sites, and $\{\mathbf{b}_i\}$ are next-nearest-neighbor distance vectors, then we have
$$
{\mathbf{a}_1} = (0,a),\\
{\mathbf{a}_2} = (\sqrt 3 a/2, - a/2),\\
{\mathbf{a}_3} = ( - \sqrt 3 a/2, - a/2)\\
{\mathbf{b}_1} = {\mathbf{a}_2} - {\mathbf{a}_3} = (\sqrt 3 a,0),\\
{\mathbf{b}_2} = {\mathbf{a}_3} - {\mathbf{a}_1} = ( - \sqrt 3 a/2, - 3a/2),\\
{\mathbf{b}_3} = {\mathbf{a}_1} - {\mathbf{a}_2} = ( - \sqrt 3 a/2,3a/2)
$$

Then the Haldane model on a hexagonal lattice can be written as
\[
H(k) = d_0 I + d_1 \sigma_1 + d_2 \sigma_2 + d_3 \sigma_3
\]
\[
\begin{aligned}
d_0 &= 2 t_2 \cos \phi \sum_i \cos (\mathbf{k} \cdot \mathbf{b}_i) \\
&= 2 t_2 \cos \phi \left[ \cos \left( \sqrt{3} k_x a \right) + \cos \left( -\frac{\sqrt{3} k_x a}{2} + \frac{3 k_y a}{2} \right) + \cos \left( -\frac{\sqrt{3} k_x a}{2} - \frac{3 k_y a}{2} \right) \right] \\
d_1 &= t_1 \sum_i \cos (\mathbf{k} \cdot \mathbf{a}_i) \\
&= t_1 \left[ \cos \left( k_y a \right) + \cos \left( \frac{\sqrt{3} k_x a}{2} - \frac{k_y a}{2} \right) + \cos \left( -\frac{\sqrt{3} k_x a}{2} - \frac{k_y a}{2} \right) \right] \\
d_2 &= t_1 \sum_i \sin (\mathbf{k} \cdot \mathbf{a}_i) \\
&= t_1 \left[ \sin \left( k_y a \right) + \sin \left( \frac{\sqrt{3} k_x a}{2} - \frac{k_y a}{2} \right) + \sin \left( -\frac{\sqrt{3} k_x a}{2} - \frac{k_y a}{2} \right) \right] \\
d_3 &= m - 2 t_2 \sin \phi \sum_i \sin (\mathbf{k} \cdot \mathbf{b}_i) \\
&= m - 2 t_2 \sin \phi \left[ \sin \left( \sqrt{3} k_x a \right) + \sin \left( -\frac{\sqrt{3} k_x a}{2} + \frac{3 k_y a}{2} \right) + \sin \left( -\frac{\sqrt{3} k_x a}{2} - \frac{3 k_y a}{2} \right) \right]
\end{aligned}
\]
\\
where $\sigma_i$ are the Pauli matrices and $I$ is the identity matrix. \\
$$H(k) = {d_0}I + {d_1}{\sigma _1} + {d_2}{\sigma _2} + {d_3}{\sigma _3}$$
$${d_0} = 2{t_2}\cos \phi \sum\nolimits_i {\cos (\mathbf{k} \cdot {\mathbf{b}_i})} = 2{t_2}\cos \phi \left[ {\cos \left( {\sqrt 3 {k_x}a} \right) + \cos \left( { - \sqrt 3 {k_x}a/2 + 3{k_y}a/2} \right) + \cos \left( { - \sqrt 3 {k_x}a/2 - 3{k_y}a/2} \right)} \right]$$
$$
{d_1} = {t_1}\sum\nolimits_i {\cos (\mathbf{k} \cdot {\mathbf{a}_i})} = {t_1}\left[ {\cos \left( {{k_y}a} \right) + \cos \left( {\sqrt 3 {k_x}a/2 - {k_y}a/2} \right) + \cos \left( { - \sqrt 3 {k_x}a/2 - {k_y}a/2} \right)} \right]\\
{d_2} = {t_1}\sum\nolimits_i {\sin (\mathbf{k} \cdot {\mathbf{a}_i})} = {t_1}\left[ {\sin \left( {{k_y}a} \right) + \sin \left( {\sqrt 3 {k_x}a/2 - {k_y}a/2} \right) + \sin \left( { - \sqrt 3 {k_x}a/2 - {k_y}a/2} \right)} \right] \\
{d_3} = m - 2{t_2}\sin \phi \sum\nolimits_i {\sin (\mathbf{k} \cdot {\mathbf{b}_i})} = m - 2{t_2}\sin \phi \left[ {\sin \left( {\sqrt 3 {k_x}a} \right) + \sin \left( { - \sqrt 3 {k_x}a/2 + 3{k_y}a/2} \right) + \sin \left( { - \sqrt 3 {k_x}a/2 - 3{k_y}a/2} \right)} \right] \\
$$

where $\sigma_i$ are the Pauli matrices and $I$ is the identity matrix.
```python
def calc_hamiltonian(kx, ky, a, t1, t2, phi, m):
"""
Expand Down

0 comments on commit 35daad9

Please sign in to comment.