-
Notifications
You must be signed in to change notification settings - Fork 36
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
281f1ed
commit d0af95c
Showing
3 changed files
with
186 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,4 @@ | ||
GPU=1 | ||
GPU=0 | ||
CUDNN=0 | ||
CUDNN_HALF=0 | ||
OPENCV=0 | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,5 @@ | ||
classes = 1 | ||
train = /home/sowmya/fedn/examples/Yolo-object-detection/client/data/train.txt | ||
valid = /home/sowmya/fedn/examples/Yolo-object-detection/client/data/val.txt | ||
names = /home/sowmya/fedn/examples/Yolo-object-detection/client/darknet/obj.names | ||
train = /Users/sowmyasriseenivasan/workspaces/fedn/examples/Yolo-object-detection/client/data/train.txt | ||
valid = /Users/sowmyasriseenivasan/workspaces/fedn/examples/Yolo-object-detection/client/data/val.txt | ||
names = /Users/sowmyasriseenivasan/workspaces/fedn/examples/Yolo-object-detection/client/data/obj.names | ||
backup = yolov4_tiny |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,182 @@ | ||
import json | ||
import os | ||
import fire | ||
import numpy as np | ||
|
||
from fedn.utils.helpers.helpers import get_helper, save_metadata, save_metrics | ||
|
||
HELPER_MODULE = "numpyhelper" | ||
helper = get_helper(HELPER_MODULE) | ||
|
||
NUM_CLASSES = 10 | ||
|
||
dir_path = os.path.dirname(os.path.realpath(__file__)) | ||
abs_path = os.path.abspath(dir_path) | ||
|
||
|
||
def _get_data_path(): | ||
data_path = os.environ.get("FEDN_DATA_PATH", abs_path + "/data/clients/1/mnist.npz") | ||
|
||
return data_path | ||
|
||
def save_darknet2fedn(darkfile, fednfile ): | ||
|
||
fp = open(darkfile, "rb") | ||
buf = np.fromfile(fp, dtype=np.float32) | ||
helper.save([buf], fednfile) | ||
fp.close() | ||
def save_fedn2darknet(fednfile, darkfile): | ||
|
||
buf = helper.load(fednfile)[0] | ||
|
||
with open(darkfile, "wb") as f: | ||
buf.tofile(f) | ||
def init_seed(out_path="../seed.npz"): | ||
"""Initialize seed model and save it to file. | ||
:param out_path: The path to save the seed model to. | ||
:type out_path: str | ||
""" | ||
#weights = compile_model().get_weights() | ||
#helper.save(weights, out_path) | ||
print("hereeee") | ||
darkfile="yolov4-tiny.weights" | ||
fp = open(darkfile, "rb") | ||
buf = np.fromfile(fp, dtype=np.float32) | ||
helper.save([buf], out_path) | ||
fp.close() | ||
|
||
def train(in_model_path, out_model_path, data_path=None, batch_size=32, epochs=1): | ||
"""Complete a model update. | ||
Load model paramters from in_model_path (managed by the FEDn client), | ||
perform a model update, and write updated paramters | ||
to out_model_path (picked up by the FEDn client). | ||
:param in_model_path: The path to the input model. | ||
:type in_model_path: str | ||
:param out_model_path: The path to save the output model to. | ||
:type out_model_path: str | ||
:param data_path: The path to the data file. | ||
:type data_path: str | ||
:param batch_size: The batch size to use. | ||
:type batch_size: int | ||
:param epochs: The number of epochs to train. | ||
:type epochs: int | ||
""" | ||
darkfile = "example.weights" | ||
|
||
save_fedn2darknet(in_model_path, darkfile) | ||
#save_darknet2fedn("/Users/sowmyasriseenivasan/workspaces/fedn/examples/Yolo-object-detection/client/darknet/yolov4-tiny.weights","client") | ||
|
||
# cli call to darknet to train darkfile and save it to e.g. darkfile_upd.weights | ||
import subprocess | ||
|
||
# Paths to your files | ||
data_file = "darknet/obj.data" | ||
cfg_file = "darknet/yolov4-tiny.cfg" | ||
yolo_converted_weights = "example.weights" # Pretrained weights file | ||
|
||
# Darknet executable path | ||
darknet_path = "./darknet/darknet" # Make sure this path is correct | ||
|
||
# Command to train YOLO using Darknet | ||
command = [darknet_path, "detector", "train", data_file, cfg_file, yolo_converted_weights] | ||
|
||
# Run the command | ||
try: | ||
subprocess.run(command, check=True) | ||
except subprocess.CalledProcessError as e: | ||
print(f"Error during training: {e}") | ||
|
||
#save_darknet2fedn("yolov4-tiny_last.weights", out_model_path) | ||
|
||
# saving metadata in the same way as in our example | ||
|
||
metadata = { | ||
# num_examples are mandatory | ||
"num_examples": 600, | ||
"batch_size": batch_size, | ||
"epochs": 1, | ||
"lr": 0.001, | ||
} | ||
# Save JSON metadata file (mandatory) | ||
save_metadata(metadata, out_model_path) | ||
# Save model update (mandatory) | ||
save_darknet2fedn("yolov4-tiny_final.weights", "output.npz") | ||
helper.save("output.npz", out_model_path) | ||
if __name__ == "__main__": | ||
fire.Fire( | ||
{ | ||
"init_seed": init_seed, | ||
"train": train, | ||
"_get_data_path": _get_data_path, # for testing | ||
} | ||
) | ||
#if __name__ == "__main__": | ||
#train("fedn/examples/Yolo-object-detection/client/yolov4-tiny.conv.29","client") | ||
#save_darknet2fedn("/Users/sowmyasriseenivasan/Downloads/example_project_yolo/firstmodel/carplusbike_firstdataset.weights","/Users/sowmyasriseenivasan/workspaces/fedn/examples/Yolo-object-detection/client/output/output.npz") | ||
#darkfile="example.weights" | ||
#init_seed() | ||
#save_fedn2darknet("/Users/sowmyasriseenivasan/workspaces/fedn/examples/Yolo-object-detection/client/output/output.npz",darkfile) | ||
""" def validate(in_model_path, out_json_path, data_path=None): | ||
""" """Validate model. | ||
:param in_model_path: The path to the input model. | ||
:type in_model_path: str | ||
:param out_json_path: The path to save the output JSON to. | ||
:type out_json_path: str | ||
:param data_path: The path to the data file. | ||
:type data_path: str """ | ||
""" | ||
# Load data | ||
x_train, y_train = load_data(data_path) | ||
x_test, y_test = load_data(data_path, is_train=False) | ||
# Load model | ||
model = compile_model() | ||
helper = get_helper(HELPER_MODULE) | ||
weights = helper.load(in_model_path) | ||
model.set_weights(weights) | ||
# Evaluate | ||
model_score = model.evaluate(x_train, y_train) | ||
model_score_test = model.evaluate(x_test, y_test) | ||
y_pred = model.predict(x_test) | ||
y_pred = np.argmax(y_pred, axis=1) | ||
# JSON schema | ||
report = { | ||
"training_loss": model_score[0], | ||
"training_accuracy": model_score[1], | ||
"test_loss": model_score_test[0], | ||
"test_accuracy": model_score_test[1], | ||
} | ||
# Save JSON | ||
save_metrics(report, out_json_path) | ||
def predict(in_model_path, out_json_path, data_path=None): | ||
# Using test data for inference but another dataset could be loaded | ||
x_test, _ = load_data(data_path, is_train=False) | ||
# Load model | ||
model = compile_model() | ||
helper = get_helper(HELPER_MODULE) | ||
weights = helper.load(in_model_path) | ||
model.set_weights(weights) | ||
# Infer | ||
y_pred = model.predict(x_test) | ||
y_pred = np.argmax(y_pred, axis=1) | ||
# Save JSON | ||
with open(out_json_path, "w") as fh: | ||
fh.write(json.dumps({"predictions": y_pred.tolist()})) """ | ||
|
||
|
||
|
||
""" if __name__ == "__main__": | ||
#train("fedn/examples/Yolo-object-detection/client/yolov4-tiny.conv.29","fedn/examples/Yolo-object-detection/client/") | ||
save_darknet2fedn("/Users/sowmyasriseenivasan/workspaces/fedn/examples/Yolo-object-detection/client/darknet/yolov4-tiny.weights","client") | ||
""" |