-
Notifications
You must be signed in to change notification settings - Fork 0
GPUPluginMemoryFormats
The memory format descriptor in clDNN usually uses the following letters:
-
b
- batch -
f
- features/channels -
w
,z
,y
,x
- spatial dimensions -
i
- input channels (for weights layout only) -
o
- output channels (for weights layout only) -
g
- groups (for weights layout only)
The combination of the characters above defines tensor format, i.e. the actual layout of tensor values in memory buffer. For example:
bfyx
format means that the tensor has 4 dimensions in planar layout and x
coordinate changes faster than y
, y
- faster than f
, and so on.
It means that for tensor with size [b: 2; f: 2; y: 2; x: 2]
we have a linear memory buffer with size=16
where:
i = 0 => [b=0; f=0; y=0; x=0];
i = 1 => [b=0; f=0; y=0; x=1];
i = 2 => [b=0; f=0; y=1; x=0];
i = 3 => [b=0; f=0; y=1; x=1];
i = 4 => [b=0; f=1; y=0; x=0];
i = 5 => [b=0; f=1; y=0; x=1];
i = 6 => [b=0; f=1; y=1; x=0];
i = 7 => [b=0; f=1; y=1; x=1];
i = 8 => [b=1; f=0; y=0; x=0];
i = 9 => [b=1; f=0; y=0; x=1];
i = 10 => [b=1; f=0; y=1; x=0];
i = 11 => [b=1; f=0; y=1; x=1];
i = 12 => [b=1; f=1; y=0; x=0];
i = 13 => [b=1; f=1; y=0; x=1];
i = 14 => [b=1; f=1; y=1; x=0];
i = 15 => [b=1; f=1; y=1; x=1];
Usually, planar memory formats are not very efficient for DNN operations, so clDNN has plenty blocked format. Blocking means that we take some tensor dimension
and put blocks of adjacent elements closer in memory (in the format with single blocking they are stored lineary in the memory). Consider the most widely used
blocked format in cldnn: b_fs_yx_fsv16
. First of all, let's understand what these additional letters mean. We have b
, f
, y
, x
dimensions here, so
this is 4D tensor.
fs=CeilDiv(f, block_size)
; fs
means feature slice
- the blocked dimension.
The block size is specified in the format name: fsv16
- block_size = 16
, blocked dimension is f
; fsv
means feature slice vector
Just like with any other layout, the coordinate of the rightmost dimension (fsv
) is changed first, then coordinate to the left (x
), and so on.
Note: if the original f
dimension is not divisible by block size (16 in this case), then it's aligned up to the first divisible value. These pad values
are filled with zeroes.
Let's look at the changes with the tensor above if we reorder it into b_fs_yx_fsv16
format:
- Actual buffer size becomes
[b: 2; f: 16; y: 2; x: 2]
, and total size = 128 - The order of elements in memory changes:
// first batch
i = 0 => [b=0; f=0; y=0; x=0] == [b=0; fs=0; y=0; x=0; fsv=0];
i = 1 => [b=0; f=1; y=0; x=0] == [b=0; fs=0; y=0; x=0; fsv=1];
i = 2 => [b=0; f=2; y=0; x=0] == [b=0; fs=0; y=0; x=0; fsv=2];
...
i = 15 => [b=0; f=15; y=0; x=0] == [b=0; fs=0; y=0; x=0; fsv=15];
i = 16 => [b=0; f=0; y=0; x=1] == [b=0; fs=0; y=0; x=1; fsv=0];
i = 17 => [b=0; f=1; y=0; x=1] == [b=0; fs=0; y=0; x=1; fsv=1];
i = 18 => [b=0; f=1; y=0; x=1] == [b=0; fs=0; y=0; x=1; fsv=2];
...
i = 31 => [b=0; f=15; y=0; x=1] == [b=0; fs=0; y=0; x=1; fsv=15];
i = 32 => [b=0; f=0; y=1; x=0] == [b=0; fs=0; y=1; x=0; fsv=0];
i = 33 => [b=0; f=1; y=1; x=0] == [b=0; fs=0; y=1; x=0; fsv=1];
i = 34 => [b=0; f=1; y=1; x=0] == [b=0; fs=0; y=1; x=0; fsv=2];
...
i = 47 => [b=0; f=15; y=1; x=0] == [b=0; fs=0; y=1; x=0; fsv=15];
i = 48 => [b=0; f=0; y=1; x=1] == [b=0; fs=0; y=1; x=1; fsv=0];
i = 49 => [b=0; f=1; y=1; x=1] == [b=0; fs=0; y=1; x=1; fsv=1];
i = 50 => [b=0; f=1; y=1; x=1] == [b=0; fs=0; y=1; x=1; fsv=2];
...
i = 63 => [b=0; f=15; y=1; x=1] == [b=0; fs=0; y=1; x=1; fsv=15];
// second batch
i = 64 => [b=1; f=0; y=0; x=0] == [b=1; fs=0; y=0; x=0; fsv=0];
i = 65 => [b=1; f=1; y=0; x=0] == [b=1; fs=0; y=0; x=0; fsv=1];
i = 66 => [b=1; f=2; y=0; x=0] == [b=1; fs=0; y=0; x=0; fsv=2];
...
i = 79 => [b=1; f=15; y=0; x=0] == [b=1; fs=0; y=0; x=0; fsv=15];
i = 80 => [b=1; f=0; y=0; x=1] == [b=1; fs=0; y=0; x=1; fsv=0];
i = 81 => [b=1; f=1; y=0; x=1] == [b=1; fs=0; y=0; x=1; fsv=1];
i = 82 => [b=1; f=1; y=0; x=1] == [b=1; fs=0; y=0; x=1; fsv=2];
...
i = 95 => [b=1; f=15; y=0; x=1] == [b=1; fs=0; y=0; x=1; fsv=15];
i = 96 => [b=1; f=0; y=1; x=0] == [b=1; fs=0; y=1; x=0; fsv=0];
i = 97 => [b=1; f=1; y=1; x=0] == [b=1; fs=0; y=1; x=0; fsv=1];
i = 98 => [b=1; f=1; y=1; x=0] == [b=1; fs=0; y=1; x=0; fsv=2];
...
i = 111 => [b=1; f=15; y=1; x=0] == [b=1; fs=0; y=1; x=0; fsv=15];
i = 112 => [b=1; f=0; y=1; x=1] == [b=1; fs=0; y=1; x=1; fsv=0];
i = 113 => [b=1; f=1; y=1; x=1] == [b=1; fs=0; y=1; x=1; fsv=1];
i = 114 => [b=1; f=1; y=1; x=1] == [b=1; fs=0; y=1; x=1; fsv=2];
...
i = 127 => [b=1; f=15; y=1; x=1] == [b=1; fs=0; y=1; x=1; fsv=15];
All clDNN formats are specified in inference-engine/thirdparty/clDNN/api/cldnn/runtime/tensor.hpp file. Most of the formats there follow the notation above.
© Copyright 2018-2021, OpenVINO team
- Home
- General resources
- How to build
-
Developer documentation
-
nGraph architecture
- nGraph code structure
- nGraph components
- Graph structure
- Transformations API
- nGraph operations enabling flow
- nGraph Debug capabilities
- Inference Engine architecture
- CPU plugin
- GPU plugin
- HETERO plugin architecture
- Snippets
- Sample for IE C++/C/Python API
-
nGraph architecture
- Tests