Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fixes ruff PLC in categories #39335

Open
wants to merge 1 commit into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions src/sage/categories/finite_complex_reflection_groups.py
Original file line number Diff line number Diff line change
Expand Up @@ -1227,8 +1227,8 @@ def milnor_fiber_complex(self):
to_test.extend((hp, j) for j in Ip)
cosets[Ip].append(frozenset(H))
verts = {}
for Ip in cosets:
for C in cosets[Ip]:
for Ip, cosetsIp in cosets.items():
for C in cosetsIp:
verts[C, Ip] = len(verts)
facets = [[verts[k] for k in verts if g in k[0]] for g in self]
from sage.topology.simplicial_complex import SimplicialComplex
Expand Down
49 changes: 25 additions & 24 deletions src/sage/categories/loop_crystals.py
Original file line number Diff line number Diff line change
Expand Up @@ -547,7 +547,7 @@ def is_perfect(self, ell=None):
from sage.rings.integer_ring import ZZ
if ell is None:
if (self.cartan_type().dual().type() == 'BC'
and self.cartan_type().rank() - 1 == self.r()):
and self.cartan_type().rank() - 1 == self.r()):
return True
ell = self.s() / self.cartan_type().c()[self.r()]
if ell not in ZZ:
Expand All @@ -557,9 +557,9 @@ def is_perfect(self, ell=None):
raise ValueError("perfectness not defined for non-integral levels")

# [FOS2010]_ check
if self.cartan_type().classical().type() not in ['E','F','G']:
if self.cartan_type().classical().type() not in ['E', 'F', 'G']:
if (self.cartan_type().dual().type() == 'BC'
and self.cartan_type().rank() - 1 == self.r()):
and self.cartan_type().rank() - 1 == self.r()):
return ell == self.s()
return ell == self.s() / self.cartan_type().c()[self.r()]

Expand All @@ -580,9 +580,9 @@ def is_perfect(self, ell=None):
rank = len(I)
La = self.weight_lattice_realization().basis()
from sage.combinat.integer_vector import IntegerVectors
for n in range(1, ell+1):
for n in range(1, ell + 1):
for c in IntegerVectors(n, rank):
w = sum(c[i]*La[i] for i in I)
w = sum(c[i] * La[i] for i in I)
if w.level() == ell:
weights.append(w)
return sorted(b.Phi() for b in MPhi) == sorted(weights)
Expand Down Expand Up @@ -629,7 +629,7 @@ def level(self):
if not self.is_perfect():
raise ValueError("this crystal is not perfect")
if (self.cartan_type().dual().type() == 'BC'
and self.cartan_type().rank() - 1 == self.r()):
and self.cartan_type().rank() - 1 == self.r()):
return self.s()
return self.s() / self.cartan_type().c()[self.r()]

Expand Down Expand Up @@ -764,7 +764,7 @@ def classically_highest_weight_vectors(self):
"""
n = len(self.crystals)
I0 = self.cartan_type().classical().index_set()
it = [ iter(self.crystals[-1].classically_highest_weight_vectors()) ]
it = [iter(self.crystals[-1].classically_highest_weight_vectors())]
path = []
ret = []
while it:
Expand All @@ -784,7 +784,7 @@ def classically_highest_weight_vectors(self):
ret.append(b)
path.pop(0)
else:
it.append( iter(self.crystals[-len(path)-1]) )
it.append(iter(self.crystals[-len(path) - 1]))
return tuple(ret)

# TODO: This is duplicated in KR crystals category
Expand Down Expand Up @@ -873,9 +873,10 @@ def one_dimensional_configuration_sum(self, q=None, group_components=True):
if group_components:
G = self.digraph(index_set=self.cartan_type().classical().index_set())
C = G.connected_components(sort=False)
return B.sum(q**(c[0].energy_function())*B.sum(B(P0(b.weight())) for b in c)
return B.sum(q**(c[0].energy_function()) * B.sum(B(P0(b.weight()))
for b in c)
for c in C)
return B.sum(q**(b.energy_function())*B(P0(b.weight())) for b in self)
return B.sum(q**(b.energy_function()) * B(P0(b.weight())) for b in self)

class ElementMethods:
def energy_function(self, algorithm=None):
Expand Down Expand Up @@ -975,8 +976,8 @@ def energy_function(self, algorithm=None):
from sage.arith.misc import integer_ceil as ceil

C = self.parent().crystals[0]
ell = ceil(C.s()/C.cartan_type().c()[C.r()])
is_perfect = all(ell == K.s()/K.cartan_type().c()[K.r()]
ell = ceil(C.s() / C.cartan_type().c()[C.r()])
is_perfect = all(ell == K.s() / K.cartan_type().c()[K.r()]
for K in self.parent().crystals)
if algorithm is None:
if is_perfect:
Expand All @@ -995,12 +996,12 @@ def energy_function(self, algorithm=None):
from sage.rings.integer_ring import ZZ
energy = ZZ.zero()
R_mats = [[K.R_matrix(Kp) for Kp in self.parent().crystals[i+1:]]
for i,K in enumerate(self.parent().crystals)]
for i, K in enumerate(self.parent().crystals)]
H_funcs = [[K.local_energy_function(Kp) for Kp in self.parent().crystals[i+1:]]
for i,K in enumerate(self.parent().crystals)]
for i, K in enumerate(self.parent().crystals)]

for i,b in enumerate(self):
for j,R in enumerate(R_mats[i]):
for i, b in enumerate(self):
for j, R in enumerate(R_mats[i]):
H = H_funcs[i][j]
bp = self[i+j+1]
T = R.domain()
Expand Down Expand Up @@ -1128,7 +1129,7 @@ def e_string_to_ground_state(self):


#####################################################################
## Local energy function
# Local energy function

class LocalEnergyFunction(Map):
r"""
Expand Down Expand Up @@ -1246,9 +1247,9 @@ def to_classical_hw(cur):
for i in self._I0:
b = cur.e(i)
if b is not None and b not in visited:
visited[b] = visited[cur] # No change
visited[b] = visited[cur] # No change
return b
return None # is classically HW or all have been visited
return None # is classically HW or all have been visited

cur = x
# Get the affine node (it might not be 0 if the type
Expand All @@ -1270,19 +1271,19 @@ def to_classical_hw(cur):

bp = self._R_matrix(b)
cp = bp.e(i0)
if b[1] == c[1] and bp[1] == cp[1]: # LL case
if b[1] == c[1] and bp[1] == cp[1]: # LL case
visited[c] = visited[b] + 1
elif b[0] == c[0] and bp[0] == cp[0]: # RR case
elif b[0] == c[0] and bp[0] == cp[0]: # RR case
visited[c] = visited[b] - 1
else:
visited[c] = visited[b] # Otherwise no change
visited[c] = visited[b] # Otherwise no change
b = c

cur = b
check0.append(b)

baseline = self._known_values[cur] - visited[cur]
for y in visited:
self._known_values[y] = baseline + visited[y]
for y, vy in visited.items():
self._known_values[y] = baseline + vy

return self._known_values[x]
11 changes: 5 additions & 6 deletions src/sage/categories/simplicial_sets.py
Original file line number Diff line number Diff line change
Expand Up @@ -723,7 +723,7 @@
if s in twop:
return twop[s]
if s.dimension() > 1:
return twist(self.face(s,s.dimension()))
return twist(self.face(s, s.dimension()))
return 1
base_ring = cm.common_parent(*twop.values())

Expand Down Expand Up @@ -815,9 +815,8 @@
differentials[d] = matrix(base_ring, old_rank, rank, sparse=False)

if cochain:
new_diffs = {}
for d in differentials:
new_diffs[d-1] = differentials[d].transpose()
new_diffs = {d - 1: diff_d.transpose()

Check warning on line 818 in src/sage/categories/simplicial_sets.py

View check run for this annotation

Codecov / codecov/patch

src/sage/categories/simplicial_sets.py#L818

Added line #L818 was not covered by tests
for d, diff_d in differentials.items()}
return ChainComplex(new_diffs, degree_of_differential=1,
check=check)
return ChainComplex(differentials, degree_of_differential=-1,
Expand Down Expand Up @@ -961,7 +960,7 @@
res = M
for g in GB:
res = res.stack(g*identity_matrix(M.ncols()))
singres = matrix(singlift(res.T, S.T,ring=res.base_ring()))
singres = matrix(singlift(res.T, S.T, ring=res.base_ring()))
return singres.submatrix(0, 0, M.nrows(), S.nrows())

def mgb(M):
Expand All @@ -973,7 +972,7 @@
sres = matrix(singstd(res.T, ring=RP))
to_delete = [i for i, r in enumerate(sres.apply_map(reduce_laurent)) if not r]
return sres.delete_rows(to_delete)
M2 = border_matrix(n+1)

if M1.nrows() == 0:
opt_verb.reset_default()
return (RP**0).quotient_module([])
Expand Down
Loading