Skip to content

Commit

Permalink
Extend FPS with an extra ptr argument (#180)
Browse files Browse the repository at this point in the history
* Extend FPS with an extra ptr argument

* update

* update

* update

---------

Co-authored-by: rusty1s <[email protected]>
  • Loading branch information
dsciebu and rusty1s authored Jun 5, 2023
1 parent b8fd424 commit b3d70bd
Show file tree
Hide file tree
Showing 4 changed files with 56 additions and 15 deletions.
1 change: 1 addition & 0 deletions .github/workflows/testing.yml
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ jobs:
- name: Install main package
run: |
pip install scipy==1.10.1 # Python 3.8 support
python setup.py develop
- name: Run test-suite
Expand Down
16 changes: 12 additions & 4 deletions test/test_fps.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,19 +25,27 @@ def test_fps(dtype, device):
[+2, -2],
], dtype, device)
batch = tensor([0, 0, 0, 0, 1, 1, 1, 1], torch.long, device)
ptr_list = [0, 4, 8]
ptr = torch.tensor(ptr_list, device=device)

out = fps(x, batch, random_start=False)
assert out.tolist() == [0, 2, 4, 6]

out = fps(x, batch, ratio=0.5, random_start=False)
assert out.tolist() == [0, 2, 4, 6]

out = fps(x, batch, ratio=torch.tensor(0.5, device=device),
random_start=False)
ratio = torch.tensor(0.5, device=device)
out = fps(x, batch, ratio=ratio, random_start=False)
assert out.tolist() == [0, 2, 4, 6]

out = fps(x, batch, ratio=torch.tensor([0.5, 0.5], device=device),
random_start=False)
out = fps(x, ptr=ptr_list, ratio=0.5, random_start=False)
assert out.tolist() == [0, 2, 4, 6]

out = fps(x, ptr=ptr, ratio=0.5, random_start=False)
assert out.tolist() == [0, 2, 4, 6]

ratio = torch.tensor([0.5, 0.5], device=device)
out = fps(x, batch, ratio=ratio, random_start=False)
assert out.tolist() == [0, 2, 4, 6]

out = fps(x, random_start=False)
Expand Down
51 changes: 40 additions & 11 deletions torch_cluster/fps.py
Original file line number Diff line number Diff line change
@@ -1,27 +1,42 @@
from typing import Optional, Union
from typing import List, Optional, Union

import torch
from torch import Tensor

import torch_cluster.typing


@torch.jit._overload # noqa
def fps(src, batch, ratio, random_start, batch_size, ptr): # noqa
# type: (Tensor, Optional[Tensor], Optional[float], bool, Optional[int], Optional[Tensor]) -> Tensor # noqa
pass # pragma: no cover


@torch.jit._overload # noqa
def fps(src, batch, ratio, random_start, batch_size, ptr): # noqa
# type: (Tensor, Optional[Tensor], Optional[Tensor], bool, Optional[int], Optional[Tensor]) -> Tensor # noqa
pass # pragma: no cover


@torch.jit._overload # noqa
def fps(src, batch, ratio, random_start, batch_size): # noqa
# type: (Tensor, Optional[Tensor], Optional[float], bool, Optional[int]) -> Tensor # noqa
def fps(src, batch, ratio, random_start, batch_size, ptr): # noqa
# type: (Tensor, Optional[Tensor], Optional[float], bool, Optional[int], Optional[List[int]]) -> Tensor # noqa
pass # pragma: no cover


@torch.jit._overload # noqa
def fps(src, batch, ratio, random_start, batch_size): # noqa
# type: (Tensor, Optional[Tensor], Optional[Tensor], bool, Optional[int]) -> Tensor # noqa
def fps(src, batch, ratio, random_start, batch_size, ptr): # noqa
# type: (Tensor, Optional[Tensor], Optional[Tensor], bool, Optional[int], Optional[List[int]]) -> Tensor # noqa
pass # pragma: no cover


def fps( # noqa
src: torch.Tensor,
batch: Optional[Tensor] = None,
ratio: Optional[Union[torch.Tensor, float]] = None,
ratio: Optional[Union[Tensor, float]] = None,
random_start: bool = True,
batch_size: Optional[int] = None,
ptr: Optional[Union[Tensor, List[int]]] = None,
):
r""""A sampling algorithm from the `"PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space"
Expand All @@ -40,6 +55,10 @@ def fps( # noqa
node in :math:`\mathbf{X}` as starting node. (default: obj:`True`)
batch_size (int, optional): The number of examples :math:`B`.
Automatically calculated if not given. (default: :obj:`None`)
ptr (torch.Tensor or [int], optional): If given, batch assignment will
be determined based on boundaries in CSR representation, *e.g.*,
:obj:`batch=[0,0,1,1,1,2]` translates to :obj:`ptr=[0,2,5,6]`.
(default: :obj:`None`)
:rtype: :class:`LongTensor`
Expand All @@ -52,7 +71,6 @@ def fps( # noqa
batch = torch.tensor([0, 0, 0, 0])
index = fps(src, batch, ratio=0.5)
"""

r: Optional[Tensor] = None
if ratio is None:
r = torch.tensor(0.5, dtype=src.dtype, device=src.device)
Expand All @@ -62,6 +80,17 @@ def fps( # noqa
r = ratio
assert r is not None

if ptr is not None:
if isinstance(ptr, list) and torch_cluster.typing.WITH_PTR_LIST:
return torch.ops.torch_cluster.fps_ptr_list(
src, ptr, r, random_start)

if isinstance(ptr, list):
return torch.ops.torch_cluster.fps(
src, torch.tensor(ptr, device=src.device), r, random_start)
else:
return torch.ops.torch_cluster.fps(src, ptr, r, random_start)

if batch is not None:
assert src.size(0) == batch.numel()
if batch_size is None:
Expand All @@ -70,9 +99,9 @@ def fps( # noqa
deg = src.new_zeros(batch_size, dtype=torch.long)
deg.scatter_add_(0, batch, torch.ones_like(batch))

ptr = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr[1:])
ptr_vec = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_vec[1:])
else:
ptr = torch.tensor([0, src.size(0)], device=src.device)
ptr_vec = torch.tensor([0, src.size(0)], device=src.device)

return torch.ops.torch_cluster.fps(src, ptr, r, random_start)
return torch.ops.torch_cluster.fps(src, ptr_vec, r, random_start)
3 changes: 3 additions & 0 deletions torch_cluster/typing.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
import torch

WITH_PTR_LIST = hasattr(torch.ops.torch_cluster, 'fps_ptr_list')

0 comments on commit b3d70bd

Please sign in to comment.