Skip to content

keras实现的人群数量估计网络"Single Image Crowd Counting via Multi Column Convolutional Neural Network"

Notifications You must be signed in to change notification settings

ruiqiren/MCNN_in_Keras

 
 

Repository files navigation

MCNN_in_Keras

keras实现的人群数量估计网络"Single Image Crowd Counting via Multi Column Convolutional Neural Network"

参考pytorch版:https://github.com/svishwa/crowdcount-mcnn

安装

  1. Clone

    git clone https://github.com/ybcc2015/MCNN_in_Keras.git
  2. 安装依赖库

    cd MCNN_in_Keras
    pip install -r requirements.txt

数据配置

  1. 下载ShanghaiTech数据集:
    Dropbox or 百度云盘

  2. 创建数据存放目录

    mkdir ./data/original/shanghaitech/
  3. part_A_finalpart_B_final存放到./data/original/shanghaitech/目录下

  4. 生成测试集的ground truth文件

    cd data_preparation
    python create_gt_test_set_shtech.py [A or B]  # Part_A or Part_B

    生成好的ground-truth文件将会保存在./data/original/shanghaitech/part_【A or B】_final/test_data/ground_truth_csv目录下

  5. 生成训练集和验证集

    cd data_preparation
    python create_training_set_shtech.py [A or B]

    生成好的数据保存将会在./data/formatted_trainval_【A or B】目录下

  6. 生成热力图
    如果你想生成测试集的ground truth热力图:

    python create_heatmaps.py [A or B]

    生成好的热力图将会保存在./heatmaps_gt目录下

2~6步均在工程根目录下操作

测试

在./trained_models目录中存放了已经训练好的模型,你可以直接用来测试:

python test.py [A or B]

测试结果将会保存在./output_【A or B】目录下

训练

如果你想自己训练模型,很简单:

python train.py [A or B]

训练好的模型将会保存在./trained_models目录下

结果

|        |  MAE   |  MSE   |
----------------------------
| Part_A |  154.4 |  221.9 |
----------------------------
| Part_B |  33.1  |  56.9  |

Part_A
原图:
原图
Ground Truth (1111) & Estimate (1256):
GT Estimate

Part_B
原图:
原图
Ground Truth (252) & Estimate(242):
GT Estimate

About

keras实现的人群数量估计网络"Single Image Crowd Counting via Multi Column Convolutional Neural Network"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%