-
Notifications
You must be signed in to change notification settings - Fork 0
/
TrackingMPC.py
114 lines (86 loc) · 2.76 KB
/
TrackingMPC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from Quadcopter import *
from Controller import *
from traj_utils import *
from scipy.signal import cont2discrete
import matplotlib.pyplot as plt
# Defining the parameters of the drone
x_baseline = 0.3
y_baseline = 0.3
c_baseline = 0.1
params = np.zeros(16)
params[:4] = np.array([-1, -1, 1, 1])*x_baseline
params[4:8] = np.array([-1, 1, -1, 1])*y_baseline
params[8:12] = np.array([-1, 1, 1, -1])*c_baseline
params[12:15] = np.array([11, 11, 22])*1e-4
params[15] = 0.2
# Create Quadcopter Object
qcop = Quadcopter(params)
# Dynamics about hover
A, B = qcop.HoverDynamics()
C = np.eye(12)
D = np.zeros((12, 4))
Ts = 0.1
# Discretize the Dynamics
Ad, Bd, *rest = cont2discrete((A,B,C,D), Ts, method='bilinear')
# Controller gain
ctrl = Controller(Ad, Bd)
xmax = np.array([1.0, 1.0, 1.0, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.0, 1.0, 1.0])*3
xmin = -xmax
umax = np.array([1, 1, 1, 1])
umin = np.array([-1, -1, -1, -1])
state_input_constraints = (umin, umax, xmin, xmax)
P = 50*np.ones(12)
Q = 10*np.ones(12)
R = np.ones(4)
N = 15
prob, references, x_init, u = ctrl.MPCTracking(P, Q, R, N, state_input_constraints)
# Random intial conditions
p0 = np.random.normal(0, 1, size=(3))
p0_dot = np.random.normal(0, 0.1, size=(3))
psi0 = np.random.normal(0, 0.5, size=(3))
psi0_dot = np.random.normal(0, 0.1, size=(3))
X0 = np.hstack((p0, p0_dot, psi0, psi0_dot))
Xeq = np.zeros(12)[:, np.newaxis]
Uhover = qcop.HoverThrusts()[:, np.newaxis]
print('Initial Condition: ', X0)
# Start simulation
timesteps = 400
X_traj = np.zeros((12, timesteps))
U_traj = np.zeros((4, timesteps))
sim = QuadcopterSimulator(qcop, Ts)
full_state = X0
# Generate Trajectory
trajGen = Trajectory(0.1, (timesteps+N)*Ts)
trajGen.CircularTraj(3, np.pi/4)
# Loop
for i in range(timesteps):
x_init.value = full_state
references.value = trajGen.getReferences(N+1, i)
prob.solve(solver='OSQP', warm_start=True)
U_ctrl = Uhover + (u.value[:, 0])[:, np.newaxis]
full_state = sim.step(full_state, np.squeeze(qcop.M @ U_ctrl))
full_state[6:9] = (full_state[6:9] + np.pi)%(2*np.pi) - np.pi
X_traj[:, i] = full_state
U_traj[:, i] = U_ctrl.squeeze()
# Plot results
fig, axs = plt.subplots(4,4, figsize=(30, 30))
axs[0][0].plot(X_traj[0, :])
axs[0][0].plot(trajGen.x_traj[:timesteps])
axs[0][1].plot(X_traj[1, :])
axs[0][1].plot(trajGen.y_traj[:timesteps])
axs[0][2].plot(X_traj[2, :])
axs[0][2].plot(trajGen.z_traj[:timesteps])
axs[0][3].plot(X_traj[3, :])
axs[1][0].plot(X_traj[4, :])
axs[1][1].plot(X_traj[5, :])
axs[1][2].plot(X_traj[6, :])
axs[1][3].plot(X_traj[7, :])
axs[2][0].plot(X_traj[8, :])
axs[2][1].plot(X_traj[9, :])
axs[2][2].plot(X_traj[10, :])
axs[2][3].plot(X_traj[11, :])
axs[3][0].plot(U_traj[0, :])
axs[3][1].plot(U_traj[1, :])
axs[3][2].plot(U_traj[2, :])
axs[3][3].plot(U_traj[3, :])
plt.show()