forked from rapidsai/cudf
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Optimization of tdigest merge aggregation. (rapidsai#16780)
Fixes rapidsai#16625 This PR fixes a slow implementation of the centroid merging step during the tdigest merge aggregation. Previously it was doing a linear march over the individual tdigests per group and merging them one by one. This led to terrible performance for large numbers of groups. In principle though, all this really was doing was a segmented sort of centroid values. So that's what this PR changes it to. Speedup for 1,000,000 input tidests with 1,000,000 individual groups is ~1000x, ``` Old --------------------------------------------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------------------------------------------- TDigest/many_tiny_groups/1000000/1/1/10000/iterations:8/manual_time 7473 ms 7472 ms 8 TDigest/many_tiny_groups2/1000000/1/1/1000/iterations:8/manual_time 7433 ms 7431 ms 8 ``` ``` New --------------------------------------------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------------------------------------------- TDigest/many_tiny_groups/1000000/1/1/10000/iterations:8/manual_time 6.72 ms 6.79 ms 8 TDigest/many_tiny_groups2/1000000/1/1/1000/iterations:8/manual_time 1.24 ms 1.32 ms 8 ``` Authors: - https://github.com/nvdbaranec - Muhammad Haseeb (https://github.com/mhaseeb123) - GALI PREM SAGAR (https://github.com/galipremsagar) Approvers: - Muhammad Haseeb (https://github.com/mhaseeb123) - Nghia Truong (https://github.com/ttnghia) - Mike Wilson (https://github.com/hyperbolic2346) URL: rapidsai#16780
- Loading branch information
1 parent
42a15ee
commit 2c5bb57
Showing
3 changed files
with
232 additions
and
88 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
/* | ||
* Copyright (c) 2024, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include <cudf_test/column_wrapper.hpp> | ||
|
||
#include <cudf/detail/tdigest/tdigest.hpp> | ||
#include <cudf/utilities/default_stream.hpp> | ||
|
||
#include <rmm/exec_policy.hpp> | ||
|
||
#include <cuda/functional> | ||
#include <thrust/copy.h> | ||
#include <thrust/execution_policy.h> | ||
|
||
#include <nvbench/nvbench.cuh> | ||
|
||
void bm_tdigest_merge(nvbench::state& state) | ||
{ | ||
auto const num_tdigests = static_cast<cudf::size_type>(state.get_int64("num_tdigests")); | ||
auto const tdigest_size = static_cast<cudf::size_type>(state.get_int64("tdigest_size")); | ||
auto const tdigests_per_group = | ||
static_cast<cudf::size_type>(state.get_int64("tdigests_per_group")); | ||
auto const max_centroids = static_cast<cudf::size_type>(state.get_int64("max_centroids")); | ||
auto const num_groups = num_tdigests / tdigests_per_group; | ||
auto const total_centroids = num_tdigests * tdigest_size; | ||
|
||
auto stream = cudf::get_default_stream(); | ||
auto mr = rmm::mr::get_current_device_resource(); | ||
|
||
constexpr int base_value = 5; | ||
|
||
// construct inner means/weights | ||
auto val_iter = cudf::detail::make_counting_transform_iterator( | ||
0, cuda::proclaim_return_type<double>([tdigest_size](cudf::size_type i) { | ||
return static_cast<double>(base_value + (i % tdigest_size)); | ||
})); | ||
auto one_iter = thrust::make_constant_iterator(1); | ||
cudf::test::fixed_width_column_wrapper<double> means(val_iter, val_iter + total_centroids); | ||
cudf::test::fixed_width_column_wrapper<double> weights(one_iter, one_iter + total_centroids); | ||
std::vector<std::unique_ptr<cudf::column>> inner_struct_children; | ||
inner_struct_children.push_back(means.release()); | ||
inner_struct_children.push_back(weights.release()); | ||
cudf::test::structs_column_wrapper inner_struct(std::move(inner_struct_children)); | ||
|
||
// construct the tdigest lists themselves | ||
auto offset_iter = cudf::detail::make_counting_transform_iterator( | ||
0, cuda::proclaim_return_type<cudf::size_type>([tdigest_size](cudf::size_type i) { | ||
return i * tdigest_size; | ||
})); | ||
cudf::test::fixed_width_column_wrapper<int> offsets(offset_iter, offset_iter + num_tdigests + 1); | ||
auto list_col = cudf::make_lists_column( | ||
num_tdigests, offsets.release(), inner_struct.release(), 0, {}, stream, mr); | ||
|
||
// min and max columns | ||
auto min_iter = thrust::make_constant_iterator(base_value); | ||
auto max_iter = thrust::make_constant_iterator(base_value + (tdigest_size - 1)); | ||
cudf::test::fixed_width_column_wrapper<double> mins(min_iter, min_iter + num_tdigests); | ||
cudf::test::fixed_width_column_wrapper<double> maxes(max_iter, max_iter + num_tdigests); | ||
|
||
// assemble the whole thing | ||
std::vector<std::unique_ptr<cudf::column>> tdigest_children; | ||
tdigest_children.push_back(std::move(list_col)); | ||
tdigest_children.push_back(mins.release()); | ||
tdigest_children.push_back(maxes.release()); | ||
cudf::test::structs_column_wrapper tdigest(std::move(tdigest_children)); | ||
|
||
rmm::device_uvector<cudf::size_type> group_offsets(num_groups + 1, stream, mr); | ||
rmm::device_uvector<cudf::size_type> group_labels(num_tdigests, stream, mr); | ||
auto group_offset_iter = cudf::detail::make_counting_transform_iterator( | ||
0, | ||
cuda::proclaim_return_type<cudf::size_type>( | ||
[tdigests_per_group] __device__(cudf::size_type i) { return i * tdigests_per_group; })); | ||
thrust::copy(rmm::exec_policy_nosync(stream, mr), | ||
group_offset_iter, | ||
group_offset_iter + num_groups + 1, | ||
group_offsets.begin()); | ||
auto group_label_iter = cudf::detail::make_counting_transform_iterator( | ||
0, | ||
cuda::proclaim_return_type<cudf::size_type>( | ||
[tdigests_per_group] __device__(cudf::size_type i) { return i / tdigests_per_group; })); | ||
thrust::copy(rmm::exec_policy_nosync(stream, mr), | ||
group_label_iter, | ||
group_label_iter + num_tdigests, | ||
group_labels.begin()); | ||
|
||
state.add_element_count(total_centroids); | ||
|
||
state.set_cuda_stream(nvbench::make_cuda_stream_view(stream.value())); | ||
state.exec(nvbench::exec_tag::timer | nvbench::exec_tag::sync, | ||
[&](nvbench::launch& launch, auto& timer) { | ||
timer.start(); | ||
auto result = cudf::tdigest::detail::group_merge_tdigest( | ||
tdigest, group_offsets, group_labels, num_groups, max_centroids, stream, mr); | ||
timer.stop(); | ||
}); | ||
} | ||
|
||
NVBENCH_BENCH(bm_tdigest_merge) | ||
.set_name("TDigest many tiny groups") | ||
.add_int64_axis("num_tdigests", {500'000}) | ||
.add_int64_axis("tdigest_size", {1, 1000}) | ||
.add_int64_axis("tdigests_per_group", {1}) | ||
.add_int64_axis("max_centroids", {10000, 1000}); | ||
|
||
NVBENCH_BENCH(bm_tdigest_merge) | ||
.set_name("TDigest many small groups") | ||
.add_int64_axis("num_tdigests", {500'000}) | ||
.add_int64_axis("tdigest_size", {1, 1000}) | ||
.add_int64_axis("tdigests_per_group", {3}) | ||
.add_int64_axis("max_centroids", {10000, 1000}); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters