Skip to content

rezachu/emotion_recognition_cnn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Speech Emotion Recognition with Convolution Neural Network

Author @rezachu

I. Introduction

  • This is a CNN Speech Emotion Recognition Model I found on GitHub.
  • There is no paper to reference according to the repository author.

II. Package Required

III. To Run

  • Please run the notebook named: CNN_emotion_recognition.ipynb
  • Please create a ./data/ folder and put all of the data inside.
  • Please create a ./model/ folder and set it as the model weight saving directory.

IV. Preparation: Understanding the Data from Repo

Data Set: The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)

  • 12 Actors & 12 Actresses recorded speech and song version respectively.
  • Actor no.18 does not have song version data.
  • Emotion Disgust, Neutral and Surprised are not included in the song version data.

Total Class:

Emotion Speech Sample Count Song Sample Count Summed Count
Neutral 96 92 188
Calm 192 184 376
Happy 192 184 376
Sad 192 184 376
Angry 192 184 376
Fearful 192 184 376
Disgust 192 0 192
Surprised 192 0 192
Total 1440 1012 2452

Sample Distribution:

  • Originally, there are 16 target classes (8 emotions and each emotion split to male and female.) in total for 1440 samples (Speech Only). The author removed the disgust, surprised and neutral from both gender which reduced the target classes to 10.

V.Preparation: Understanding the Model

Model Architecture:

# Model 
model = Sequential()
model.add(Conv1D(256, 8, padding='same',input_shape=(X_train.shape[1],1))) #1
model.add(Activation('relu'))
model.add(Conv1D(256, 8, padding='same')) #2
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.25))
model.add(MaxPooling1D(pool_size=(8)))
model.add(Conv1D(128, 8, padding='same')) #3
model.add(Activation('relu')) 
model.add(Conv1D(128, 8, padding='same')) #4
model.add(Activation('relu'))
model.add(Conv1D(128, 8, padding='same')) #5
model.add(Activation('relu'))
model.add(Conv1D(128, 8, padding='same')) #6
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.25))
model.add(MaxPooling1D(pool_size=(8)))
model.add(Conv1D(64, 8, padding='same')) #7
model.add(Activation('relu'))
model.add(Conv1D(64, 8, padding='same')) #8
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(target_class)) #9
model.add(Activation('softmax'))
opt = keras.optimizers.SGD(lr=0.0001, momentum=0.0, decay=0.0, nesterov=False)

VI. Project Summary

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published