Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Create gbm.py- Solving issue #128 #154

Merged
merged 1 commit into from
Jun 3, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
147 changes: 147 additions & 0 deletions GBM model/gbm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, roc_auc_score, roc_curve

# Load the dataset
file_path = '/kaggle/input/credit-card-eligibility-data-determining-factors/dataset.csv'
data = pd.read_csv(file_path)

# Display basic information about the dataset
print("Dataset Information:")
print(data.info())

# Display the first few rows of the dataset
print("\nFirst few rows of the dataset:")
print(data.head())

# Check for missing values
print("\nMissing Values:")
print(data.isnull().sum())

# Check for class imbalance
print("\nClass Distribution:")
print(data['Target'].value_counts())

# Visualize the class distribution
plt.figure(figsize=(8, 6))
sns.countplot(data['Target'])
plt.title('Class Distribution')
plt.show()

# Display summary statistics
print("\nSummary Statistics:")
print(data.describe())

# Strip leading/trailing spaces from column names
data.columns = data.columns.str.strip()

# Encode categorical features
categorical_cols = data.select_dtypes(include=['object']).columns
for col in categorical_cols:
le = LabelEncoder()
data[col] = le.fit_transform(data[col])

# Define features and target
X = data.drop(columns=['ID', 'Target'])
y = data['Target']

# Identify categorical and numerical columns
categorical_cols = X.select_dtypes(include=['object']).columns
numerical_cols = X.select_dtypes(exclude=['object']).columns

# Preprocessing for numerical data
numerical_transformer = StandardScaler()

# Preprocessing for categorical data
categorical_transformer = OneHotEncoder(handle_unknown='ignore')

# Bundle preprocessing for numerical and categorical data
preprocessor = ColumnTransformer(
transformers=[
('num', numerical_transformer, numerical_cols),
('cat', categorical_transformer, categorical_cols)
])

# Define the model
model = GradientBoostingClassifier(random_state=42)

# Create the pipeline
pipeline = Pipeline(steps=[('preprocessor', preprocessor),
('model', model)])

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Perform hyperparameter tuning using GridSearchCV
param_grid = {
'model__n_estimators': [100, 200],
'model__learning_rate': [0.1, 0.05, 0.01],
'model__max_depth': [3, 4, 5]
}

grid_search = GridSearchCV(pipeline, param_grid, cv=5, scoring='accuracy', n_jobs=-1)
grid_search.fit(X_train, y_train)

# Display the best parameters and best score
print("\nBest Parameters:")
print(grid_search.best_params_)
print("\nBest Score:")
print(grid_search.best_score_)

# Evaluate the model on the test set
best_model = grid_search.best_estimator_
y_pred = best_model.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
class_report = classification_report(y_test, y_pred)

print(f"\nAccuracy: {accuracy}")
print("\nConfusion Matrix:")
print(conf_matrix)
print("\nClassification Report:")
print(class_report)

# Plot ROC curve
y_pred_proba = best_model.predict_proba(X_test)[:, 1]
fpr, tpr, _ = roc_curve(y_test, y_pred_proba)
roc_auc = roc_auc_score(y_test, y_pred_proba)

plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, label=f'ROC Curve (area = {roc_auc:.2f})')
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc='best')
plt.show()

# Feature importance
feature_importances = best_model.named_steps['model'].feature_importances_
feature_names = numerical_cols.tolist() + best_model.named_steps['preprocessor'].transformers_[1][1].get_feature_names_out(categorical_cols).tolist()

# Create a dataframe for feature importances
importance_df = pd.DataFrame({
'Feature': feature_names,
'Importance': feature_importances
}).sort_values(by='Importance', ascending=False)

print("\nFeature Importances:")
print(importance_df)

# Plot feature importances
plt.figure(figsize=(12, 8))
sns.barplot(x='Importance', y='Feature', data=importance_df)
plt.title('Feature Importances')
plt.show()

# Save the model
import joblib
joblib.dump(best_model, 'best_gbm_model.pkl')
Loading