-
Notifications
You must be signed in to change notification settings - Fork 301
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #120 from poojaharihar03/main
Placement_Predictor
- Loading branch information
Showing
9 changed files
with
2,596 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
# Placement Predictos | ||
|
||
This folder provides the code for placement analysis and an interactive interface for analyzing and visualizing data using Python libraries such as Pandas, Seaborn, Matplotlib, and Scikit-learn. | ||
|
||
|
||
You can access the app at [https://placementanalysis-zgmvrc67ajweogwmgep3ta.streamlit.app/](https://placementanalysis-zgmvrc67ajweogwmgep3ta.streamlit.app/). | ||
|
||
## Introduction | ||
|
||
Data analysis is an essential part of modern decision-making processes. With the proliferation of data in various domains, having tools to explore, visualize, and understand data is crucial. This Streamlit app aims to simplify the data analysis process by providing a user-friendly interface to perform common data analysis tasks. | ||
Further, a Logistic Regression Model is used to find the placement of candidates and the app is hosted on streamlit | ||
## Features | ||
|
||
- Load and explore datasets | ||
- Perform data preprocessing (e.g., handling missing values, encoding categorical variables) | ||
- Visualize data using various plots (e.g., scatter plots, histograms, heatmaps) | ||
- Train and evaluate machine learning models | ||
|
||
## Installation | ||
``` | ||
git clone https://github.com/yourusername/streamlit-data-analysis-app.git | ||
cd Placement_Predictor | ||
``` | ||
|
||
### Create a Virtual Environment | ||
#### macOS | ||
|
||
Open Terminal and navigate to the project directory. Run the following commands to create a virtual environment named `venv`: | ||
``` | ||
python3 -m venv venv | ||
``` | ||
Activate the virtual environment: | ||
``` | ||
source venv/bin/activate | ||
``` | ||
|
||
#### Windows | ||
|
||
Open Command Prompt and navigate to the project directory. Run the following commands to create a virtual environment named `venv`: | ||
``` | ||
python -m venv venv | ||
``` | ||
Activate the virtual environment: | ||
``` | ||
venv\Scripts\activate | ||
``` | ||
|
||
### Install Dependencies | ||
|
||
Once the virtual environment is activated, install the required dependencies using pip: | ||
``` | ||
pip install -r requirements.txt | ||
``` | ||
|
||
## Usage | ||
|
||
Once the dependencies are installed, you can run the app using the following command: | ||
``` | ||
streamlit run app.py | ||
``` | ||
|
||
This will start a local server, and you can access the app in your web browser at `http://localhost:8501`. | ||
|
||
### Prerequisites | ||
|
||
Before proceeding, ensure you have Python installed on your system. You can download it from [python.org](https://www.python.org/downloads/). | ||
|
||
|
||
## Authors | ||
- [Pooja Harihar](https://github.com/poojaharihar03) | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"id": "06ed934a", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"( Sno Gender 10th % SSC Board 12th % HSC Board 12th Stream Degree % \\\n", | ||
" 0 1 M 67.00 Others 91.00 Others Commerce 58.00 \n", | ||
" 1 2 M 79.33 Central 78.33 Others Science 77.48 \n", | ||
" 2 3 M 65.00 Central 68.00 Central Arts 64.00 \n", | ||
" 3 4 M 56.00 Central 52.00 Central Science 52.00 \n", | ||
" 4 5 M 85.80 Central 73.60 Central Commerce 73.30 \n", | ||
" \n", | ||
" Degree stream Work exp specialisation Mba % status salary \n", | ||
" 0 Sci&Tech No Mkt&HR 58.80 Placed 270000.0 \n", | ||
" 1 Sci&Tech Yes Mkt&Fin 66.28 Placed 200000.0 \n", | ||
" 2 Comm&Mgmt No Mkt&Fin 57.80 Placed 250000.0 \n", | ||
" 3 Sci&Tech No Mkt&HR 59.43 Not Placed NaN \n", | ||
" 4 Comm&Mgmt No Mkt&Fin 55.50 Placed 425000.0 ,\n", | ||
" Unnamed: 0 cgpa iq placement\n", | ||
" 0 0 6.8 123.0 1\n", | ||
" 1 1 5.9 106.0 0\n", | ||
" 2 2 5.3 121.0 0\n", | ||
" 3 3 7.4 132.0 1\n", | ||
" 4 4 5.8 142.0 0)" | ||
] | ||
}, | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"\n", | ||
"# Load datasets\n", | ||
"file1 = 'datasets/Placement_Data_Full_Class.csv'\n", | ||
"file2 = 'datasets/placement-dataset.csv'\n", | ||
"\n", | ||
"data1 = pd.read_csv(file1)\n", | ||
"data2 = pd.read_csv(file2)\n", | ||
"\n", | ||
"# Display the first few rows of each dataset\n", | ||
"data1_head = data1.head()\n", | ||
"data2_head = data2.head()\n", | ||
"\n", | ||
"data1_head, data2_head\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"id": "c4f906a8", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
" Gender 10th % SSC Board 12th % HSC Board 12th Stream Degree % \\\n", | ||
"0 M 67.00 Others 91.00 Others Commerce 58.00 \n", | ||
"1 M 79.33 Central 78.33 Others Science 77.48 \n", | ||
"2 M 65.00 Central 68.00 Central Arts 64.00 \n", | ||
"3 M 56.00 Central 52.00 Central Science 52.00 \n", | ||
"4 M 85.80 Central 73.60 Central Commerce 73.30 \n", | ||
"\n", | ||
" Degree stream Work exp specialisation Mba % status salary cgpa \\\n", | ||
"0 Sci&Tech No Mkt&HR 58.80 Placed 270000.0 5.9 \n", | ||
"1 Sci&Tech Yes Mkt&Fin 66.28 Placed 200000.0 5.3 \n", | ||
"2 Comm&Mgmt No Mkt&Fin 57.80 Placed 250000.0 7.4 \n", | ||
"3 Sci&Tech No Mkt&HR 59.43 Not Placed NaN 5.8 \n", | ||
"4 Comm&Mgmt No Mkt&Fin 55.50 Placed 425000.0 7.1 \n", | ||
"\n", | ||
" iq placement \n", | ||
"0 106.0 0 \n", | ||
"1 121.0 0 \n", | ||
"2 132.0 1 \n", | ||
"3 142.0 0 \n", | ||
"4 48.0 1 \n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# Reset index for merging\n", | ||
"data1 = data1.reset_index(drop=True)\n", | ||
"data2 = data2.rename(columns={'Unnamed: 0': 'Sno'})\n", | ||
"\n", | ||
"# Merge on 'Sno'\n", | ||
"merged_data = pd.merge(data1, data2, on='Sno', how='inner')\n", | ||
"\n", | ||
"# Drop unnecessary columns\n", | ||
"merged_data = merged_data.drop(['Sno'], axis=1)\n", | ||
"\n", | ||
"# Display the first few rows of the merged dataset\n", | ||
"print(merged_data.head())\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"id": "2e1707b8", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"'datasets/merged_placement_data.csv'" | ||
] | ||
}, | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"# Merge datasets\n", | ||
"data1 = data1.reset_index(drop=True)\n", | ||
"data2 = data2.rename(columns={'Unnamed: 0': 'Sno'})\n", | ||
"\n", | ||
"# Merge on 'Sno'\n", | ||
"merged_data = pd.merge(data1, data2, on='Sno', how='inner')\n", | ||
"\n", | ||
"# Drop unnecessary columns\n", | ||
"merged_data = merged_data.drop(['Sno'], axis=1)\n", | ||
"\n", | ||
"# Save the merged dataset to a CSV file\n", | ||
"merged_file_path = 'datasets/merged_placement_data.csv'\n", | ||
"merged_data.to_csv(merged_file_path, index=False)\n", | ||
"\n", | ||
"merged_file_path\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "7cbf15e8", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.5" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
Oops, something went wrong.