Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FEA] Add support for select_k on CSR matrix #2140

Merged
merged 23 commits into from
Apr 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
23 commits
Select commit Hold shift + click to select a range
5071971
[FEA] Add support for `select_k` on CSR matrix
rhdong Jan 31, 2024
7cd874f
Merge branch 'branch-24.04' into rhdong/select_k_csr
rhdong Jan 31, 2024
8550849
Merge remote-tracking branch 'origin/branch-24.04' into rhdong/select…
rhdong Mar 4, 2024
3cf7e07
Merge remote-tracking branch 'origin/branch-24.04' into rhdong/select…
rhdong Mar 7, 2024
435286a
add more comments on the select_k API
rhdong Jan 31, 2024
977ccee
remove mr argument
rhdong Mar 4, 2024
2108c42
Merge remote-tracking branch 'origin/branch-24.04' into rhdong/select…
rhdong Mar 13, 2024
60cfbf3
Merge branch 'branch-24.04' into rhdong/select_k_csr
rhdong Mar 15, 2024
27d1645
Merge remote-tracking branch 'origin/branch-24.04' into rhdong/select…
rhdong Mar 15, 2024
bc544e3
fix format issue
rhdong Mar 15, 2024
a3051d2
Merge branch 'rhdong/select_k_csr' of https://github.com/rhdong/raft …
rhdong Mar 15, 2024
8b9181b
Merge remote-tracking branch 'origin/branch-24.04' into rhdong/select…
rhdong Mar 30, 2024
558b69e
Optimizing the performance by reusing the dense `select_k`
rhdong Mar 30, 2024
392d050
Merge branch 'branch-24.06' into rhdong/select_k_csr
rhdong Mar 30, 2024
5abbd4e
add `algo` to new select_k
rhdong Mar 30, 2024
ae70762
add more test cases for coverage
rhdong Apr 1, 2024
db24068
Response to the review comments.
rhdong Apr 2, 2024
96ded4d
fix CI by removing segmented_copy totally.
rhdong Apr 3, 2024
9e8ae31
move public API to naming scope of sparse
rhdong Apr 4, 2024
5924bbb
Merge branch 'branch-24.06' into rhdong/select_k_csr
rhdong Apr 4, 2024
b53cee3
add back the missed '@defgroup select_k'
rhdong Apr 4, 2024
48cc460
Merge branch 'rhdong/select_k_csr' of https://github.com/rhdong/raft …
rhdong Apr 4, 2024
04a8bb4
Move all of the impl over to sparse name scope
rhdong Apr 5, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions cpp/bench/prims/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -137,6 +137,7 @@ if(BUILD_PRIMS_BENCH)
PATH
bench/prims/sparse/bitmap_to_csr.cu
bench/prims/sparse/convert_csr.cu
bench/prims/sparse/select_k_csr.cu
bench/prims/main.cpp
)

Expand Down
287 changes: 287 additions & 0 deletions cpp/bench/prims/sparse/select_k_csr.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,287 @@
/*
* Copyright (c) 2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <common/benchmark.hpp>

#include <raft/core/device_csr_matrix.hpp>
#include <raft/core/device_mdarray.hpp>
#include <raft/core/device_mdspan.hpp>
#include <raft/core/device_resources.hpp>
#include <raft/core/resource/cuda_stream.hpp>
#include <raft/core/resources.hpp>
#include <raft/matrix/copy.cuh>
#include <raft/random/make_blobs.cuh>
#include <raft/random/rng_state.hpp>
#include <raft/sparse/convert/csr.cuh>
#include <raft/sparse/matrix/select_k.cuh>
#include <raft/util/cuda_utils.cuh>
#include <raft/util/itertools.hpp>

#include <rmm/device_uvector.hpp>

#include <random>
#include <sstream>
#include <unordered_set>
#include <vector>

namespace raft::bench::sparse {

template <typename index_t>
struct bench_param {
index_t n_rows;
index_t n_cols;
index_t top_k;
float sparsity;
bool select_min = true;
bool customized_indices = false;
};

template <typename index_t>
inline auto operator<<(std::ostream& os, const bench_param<index_t>& params) -> std::ostream&
{
os << params.n_rows << "#" << params.n_cols << "#" << params.top_k << "#" << params.sparsity;
return os;
}

template <typename value_t, typename index_t>
struct SelectKCsrTest : public fixture {
SelectKCsrTest(const bench_param<index_t>& p)
: fixture(true),
params(p),
handle(stream),
values_d(0, stream),
indptr_d(0, stream),
indices_d(0, stream),
customized_indices_d(0, stream),
dst_values_d(0, stream),
dst_indices_d(0, stream)
{
std::vector<bool> dense_values_h(params.n_rows * params.n_cols);
nnz = create_sparse_matrix(params.n_rows, params.n_cols, params.sparsity, dense_values_h);

std::vector<index_t> indices_h(nnz);
std::vector<index_t> customized_indices_h(nnz);
std::vector<index_t> indptr_h(params.n_rows + 1);

convert_to_csr(dense_values_h, params.n_rows, params.n_cols, indices_h, indptr_h);

std::vector<value_t> dst_values_h(params.n_rows * params.top_k, static_cast<value_t>(2.0f));
std::vector<index_t> dst_indices_h(params.n_rows * params.top_k,
static_cast<index_t>(params.n_rows * params.n_cols * 100));

dst_values_d.resize(params.n_rows * params.top_k, stream);
dst_indices_d.resize(params.n_rows * params.top_k, stream);
values_d.resize(nnz, stream);

if (nnz) {
auto blobs_values = raft::make_device_matrix<value_t, index_t>(handle, 1, nnz);
auto labels = raft::make_device_vector<index_t, index_t>(handle, 1);

raft::random::make_blobs<value_t, index_t>(blobs_values.data_handle(),
labels.data_handle(),
1,
nnz,
1,
stream,
false,
nullptr,
nullptr,
value_t(1.0),
false,
value_t(-10.0f),
value_t(10.0f),
uint64_t(2024));
raft::copy(values_d.data(), blobs_values.data_handle(), nnz, stream);
resource::sync_stream(handle);
}

indices_d.resize(nnz, stream);
indptr_d.resize(params.n_rows + 1, stream);

update_device(indices_d.data(), indices_h.data(), indices_h.size(), stream);
update_device(indptr_d.data(), indptr_h.data(), indptr_h.size(), stream);

if (params.customized_indices) {
customized_indices_d.resize(nnz, stream);
update_device(customized_indices_d.data(),
customized_indices_h.data(),
customized_indices_h.size(),
stream);
}
}

index_t create_sparse_matrix(index_t m, index_t n, value_t sparsity, std::vector<bool>& matrix)
{
index_t total_elements = static_cast<index_t>(m * n);
index_t num_ones = static_cast<index_t>((total_elements * 1.0f) * sparsity);
index_t res = num_ones;

for (index_t i = 0; i < total_elements; ++i) {
matrix[i] = false;
}

std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<> dis_idx(0, total_elements - 1);

while (num_ones > 0) {
size_t index = dis_idx(gen);
if (matrix[index] == false) {
matrix[index] = true;
num_ones--;
}
}
return res;
}

void convert_to_csr(std::vector<bool>& matrix,
index_t rows,
index_t cols,
std::vector<index_t>& indices,
std::vector<index_t>& indptr)
{
index_t offset_indptr = 0;
index_t offset_values = 0;
indptr[offset_indptr++] = 0;

for (index_t i = 0; i < rows; ++i) {
for (index_t j = 0; j < cols; ++j) {
if (matrix[i * cols + j]) {
indices[offset_values] = static_cast<index_t>(j);
offset_values++;
}
}
indptr[offset_indptr++] = static_cast<index_t>(offset_values);
}
}

template <typename data_t>
std::optional<data_t> get_opt_var(data_t x)
{
if (params.customized_indices) {
return x;
} else {
return std::nullopt;
}
}

void run_benchmark(::benchmark::State& state) override
{
std::ostringstream label_stream;
label_stream << params;
state.SetLabel(label_stream.str());

auto in_val_structure = raft::make_device_compressed_structure_view<index_t, index_t, index_t>(
indptr_d.data(),
indices_d.data(),
params.n_rows,
params.n_cols,
static_cast<index_t>(indices_d.size()));

auto in_val =
raft::make_device_csr_matrix_view<const value_t>(values_d.data(), in_val_structure);

std::optional<raft::device_vector_view<const index_t, index_t>> in_idx;

in_idx = get_opt_var(
raft::make_device_vector_view<const index_t, index_t>(customized_indices_d.data(), nnz));

auto out_val = raft::make_device_matrix_view<value_t, index_t, raft::row_major>(
dst_values_d.data(), params.n_rows, params.top_k);
auto out_idx = raft::make_device_matrix_view<index_t, index_t, raft::row_major>(
dst_indices_d.data(), params.n_rows, params.top_k);

raft::sparse::matrix::select_k(handle, in_val, in_idx, out_val, out_idx, params.select_min);
resource::sync_stream(handle);
loop_on_state(state, [this, &in_val, &in_idx, &out_val, &out_idx]() {
raft::sparse::matrix::select_k(
handle, in_val, in_idx, out_val, out_idx, params.select_min, false);
resource::sync_stream(handle);
});
}

protected:
const raft::device_resources handle;

bench_param<index_t> params;
index_t nnz;

rmm::device_uvector<value_t> values_d;
rmm::device_uvector<index_t> indptr_d;
rmm::device_uvector<index_t> indices_d;
rmm::device_uvector<index_t> customized_indices_d;

rmm::device_uvector<value_t> dst_values_d;
rmm::device_uvector<index_t> dst_indices_d;
}; // struct SelectKCsrTest

template <typename index_t>
const std::vector<bench_param<index_t>> getInputs()
{
std::vector<bench_param<index_t>> param_vec;
struct TestParams {
index_t m;
index_t n;
index_t k;
};

const std::vector<TestParams> params_group{
{20000, 500, 1}, {20000, 500, 2}, {20000, 500, 4}, {20000, 500, 8},
{20000, 500, 16}, {20000, 500, 32}, {20000, 500, 64}, {20000, 500, 128},
{20000, 500, 256},

{1000, 10000, 1}, {1000, 10000, 2}, {1000, 10000, 4}, {1000, 10000, 8},
{1000, 10000, 16}, {1000, 10000, 32}, {1000, 10000, 64}, {1000, 10000, 128},
{1000, 10000, 256},

{100, 100000, 1}, {100, 100000, 2}, {100, 100000, 4}, {100, 100000, 8},
{100, 100000, 16}, {100, 100000, 32}, {100, 100000, 64}, {100, 100000, 128},
{100, 100000, 256},

{10, 1000000, 1}, {10, 1000000, 2}, {10, 1000000, 4}, {10, 1000000, 8},
{10, 1000000, 16}, {10, 1000000, 32}, {10, 1000000, 64}, {10, 1000000, 128},
{10, 1000000, 256},

{10, 1000000, 1}, {10, 1000000, 2}, {10, 1000000, 4}, {10, 1000000, 8},
{10, 1000000, 16}, {10, 1000000, 32}, {10, 1000000, 64}, {10, 1000000, 128},
{10, 1000000, 256},

{10, 1000000, 1}, {10, 1000000, 16}, {10, 1000000, 64}, {10, 1000000, 128},
{10, 1000000, 256},

{10, 1000000, 1}, {10, 1000000, 16}, {10, 1000000, 64}, {10, 1000000, 128},
{10, 1000000, 256}, {1000, 10000, 1}, {1000, 10000, 16}, {1000, 10000, 64},
{1000, 10000, 128}, {1000, 10000, 256},

{10, 1000000, 1}, {10, 1000000, 16}, {10, 1000000, 64}, {10, 1000000, 128},
{10, 1000000, 256}, {1000, 10000, 1}, {1000, 10000, 16}, {1000, 10000, 64},
{1000, 10000, 128}, {1000, 10000, 256}};

param_vec.reserve(params_group.size());
for (TestParams params : params_group) {
param_vec.push_back(bench_param<index_t>({params.m, params.n, params.k, 0.1}));
}
for (TestParams params : params_group) {
param_vec.push_back(bench_param<index_t>({params.m, params.n, params.k, 0.2}));
}
for (TestParams params : params_group) {
param_vec.push_back(bench_param<index_t>({params.m, params.n, params.k, 0.5}));
}
return param_vec;
}

RAFT_BENCH_REGISTER((SelectKCsrTest<float, uint32_t>), "", getInputs<uint32_t>());

} // namespace raft::bench::sparse
Loading
Loading