Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Expose cluster_cost to python #1028

Merged
merged 5 commits into from
Nov 21, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions cpp/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -286,6 +286,8 @@ if(RAFT_COMPILE_DIST_LIBRARY)
src/distance/fused_l2_min_arg.cu
src/distance/update_centroids_float.cu
src/distance/update_centroids_double.cu
src/distance/cluster_cost_float.cu
src/distance/cluster_cost_double.cu
src/distance/specializations/detail/canberra.cu
src/distance/specializations/detail/chebyshev.cu
src/distance/specializations/detail/correlation.cu
Expand Down
17 changes: 16 additions & 1 deletion cpp/include/raft_distance/kmeans.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -41,4 +41,19 @@ void update_centroids(raft::handle_t const& handle,
double* new_centroids,
double* weight_per_cluster);

} // namespace raft::cluster::kmeans::runtime
void cluster_cost(raft::handle_t const& handle,
const float* X,
int n_samples,
int n_features,
int n_clusters,
const float* centroids,
float* cost);

void cluster_cost(raft::handle_t const& handle,
const double* X,
int n_samples,
int n_features,
int n_clusters,
const double* centroids,
double* cost);
} // namespace raft::cluster::kmeans::runtime
79 changes: 79 additions & 0 deletions cpp/src/distance/cluster_cost.cuh
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
/*
* Copyright (c) 2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include <raft/cluster/kmeans.cuh>
#include <raft/distance/distance_types.hpp>
#include <raft/distance/fused_l2_nn.cuh>
#include <raft/handle.hpp>

namespace raft::cluster::kmeans::runtime {
template <typename ElementType, typename IndexType>
void cluster_cost(const raft::handle_t& handle,
const ElementType* X,
IndexType n_samples,
IndexType n_features,
IndexType n_clusters,
const ElementType* centroids,
ElementType* cost)
{
rmm::device_uvector<char> workspace(n_samples * sizeof(IndexType), handle.get_stream());

rmm::device_uvector<ElementType> x_norms(n_samples, handle.get_stream());
rmm::device_uvector<ElementType> centroid_norms(n_clusters, handle.get_stream());
raft::linalg::rowNorm(
x_norms.data(), X, n_features, n_samples, raft::linalg::L2Norm, true, handle.get_stream());
raft::linalg::rowNorm(centroid_norms.data(),
centroids,
n_features,
n_clusters,
raft::linalg::L2Norm,
true,
handle.get_stream());

auto min_cluster_distance =
raft::make_device_vector<raft::KeyValuePair<IndexType, ElementType>>(handle, n_samples);
raft::distance::fusedL2NNMinReduce(min_cluster_distance.data_handle(),
X,
centroids,
x_norms.data(),
centroid_norms.data(),
n_samples,
n_clusters,
n_features,
(void*)workspace.data(),
false,
true,
handle.get_stream());

auto distances = raft::make_device_vector<ElementType, IndexType>(handle, n_samples);
thrust::transform(
handle.get_thrust_policy(),
min_cluster_distance.data_handle(),
min_cluster_distance.data_handle() + n_samples,
distances.data_handle(),
[] __device__(const raft::KeyValuePair<IndexType, ElementType>& a) { return a.value; });

rmm::device_scalar<ElementType> device_cost(0, handle.get_stream());
raft::cluster::kmeans::cluster_cost(
Copy link
Member

@cjnolet cjnolet Nov 18, 2022

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think we're doing an additional computation here that can be avoided by running the fusedL2NNMinReduce w/ sqrt=False. If we have the squared distances already then we should just be able sum them up to get the inertia score. I'm thinking this might also help us avoid running into #1036 in this PR (assuming my assumption is correct that the issue is related to sqrt=True).

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could do a simple L1 norm computation for the reduction, I guess.

void norm(const raft::handle_t& handle,

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

thats a good point - and I've made the change to fusedL2NNMinReduce w/ sqrt=False. I checked the cluster cost, and its already only doing a sum reduction - so using sqrt=True was wrong here.

This also lets us avoid the issue in #1036 - afaict you are right and this issue is only with sqrt=True (all the tests pass at least now =) ).

handle,
distances.view(),
workspace,
make_device_scalar_view<ElementType>(device_cost.data()),
[] __device__(const ElementType& a, const ElementType& b) { return a + b; });

raft::update_host(cost, device_cost.data(), 1, handle.get_stream());
}
} // namespace raft::cluster::kmeans::runtime
34 changes: 34 additions & 0 deletions cpp/src/distance/cluster_cost_double.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
/*
* Copyright (c) 2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include "cluster_cost.cuh"
#include <raft/distance/distance_types.hpp>
#include <raft/distance/specializations.cuh>
#include <raft/handle.hpp>

namespace raft::cluster::kmeans::runtime {

void cluster_cost(const raft::handle_t& handle,
const double* X,
int n_samples,
int n_features,
int n_clusters,
const double* centroids,
double* cost)
{
cluster_cost<double, int>(handle, X, n_samples, n_features, n_clusters, centroids, cost);
}
} // namespace raft::cluster::kmeans::runtime
34 changes: 34 additions & 0 deletions cpp/src/distance/cluster_cost_float.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
/*
* Copyright (c) 2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include "cluster_cost.cuh"
#include <raft/distance/distance_types.hpp>
#include <raft/distance/specializations.cuh>
#include <raft/handle.hpp>

namespace raft::cluster::kmeans::runtime {

void cluster_cost(const raft::handle_t& handle,
const float* X,
int n_samples,
int n_features,
int n_clusters,
const float* centroids,
float* cost)
{
cluster_cost<float, int>(handle, X, n_samples, n_features, n_clusters, centroids, cost);
}
} // namespace raft::cluster::kmeans::runtime
123 changes: 94 additions & 29 deletions python/pylibraft/pylibraft/cluster/kmeans.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -26,46 +26,24 @@ from libcpp cimport bool, nullptr

from pylibraft.common import Handle
from pylibraft.common.handle import auto_sync_handle

from pylibraft.common.handle cimport handle_t

from pylibraft.common.input_validation import *
from pylibraft.distance import DISTANCE_TYPES

from pylibraft.cpp.kmeans cimport (
cluster_cost as cpp_cluster_cost,
update_centroids,
)


def is_c_cont(cai, dt):
return "strides" not in cai or \
cai["strides"] is None or \
cai["strides"][1] == dt.itemsize


cdef extern from "raft_distance/kmeans.hpp" \
namespace "raft::cluster::kmeans::runtime":

cdef void update_centroids(
const handle_t& handle,
const double *X,
int n_samples,
int n_features,
int n_clusters,
const double *sample_weights,
const double *centroids,
const int* labels,
double *new_centroids,
double *weight_per_cluster) except +

cdef void update_centroids(
const handle_t& handle,
const float *X,
int n_samples,
int n_features,
int n_clusters,
const float *sample_weights,
const float *centroids,
const int* labels,
float *new_centroids,
float *weight_per_cluster) except +


@auto_sync_handle
def compute_new_centroids(X,
centroids,
Expand Down Expand Up @@ -109,7 +87,6 @@ def compute_new_centroids(X,

from pylibraft.common import Handle
from pylibraft.cluster.kmeans import compute_new_centroids
from pylibraft.distance import fused_l2_nn_argmin

# A single RAFT handle can optionally be reused across
# pylibraft functions.
Expand Down Expand Up @@ -220,3 +197,91 @@ def compute_new_centroids(X,
<double*> weight_per_cluster_ptr)
else:
raise ValueError("dtype %s not supported" % x_dt)


@auto_sync_handle
def cluster_cost(X, centroids, handle=None):
"""
Compute cluster cost given an input matrix and existing centroids

Parameters
----------
X : Input CUDA array interface compliant matrix shape (m, k)
centroids : Input CUDA array interface compliant matrix shape
(n_clusters, k)
{handle_docstring}

Examples
--------

.. code-block:: python
import cupy as cp

from pylibraft.cluster.kmeans import cluster_cost

n_samples = 5000
n_features = 50
n_clusters = 3

X = cp.random.random_sample((n_samples, n_features),
dtype=cp.float32)

centroids = cp.random.random_sample((n_clusters, n_features),
dtype=cp.float32)

inertia = cluster_cost(X, centroids)
"""
x_cai = X.__cuda_array_interface__
centroids_cai = centroids.__cuda_array_interface__

m = x_cai["shape"][0]
x_k = x_cai["shape"][1]
n_clusters = centroids_cai["shape"][0]

centroids_k = centroids_cai["shape"][1]

x_dt = np.dtype(x_cai["typestr"])
centroids_dt = np.dtype(centroids_cai["typestr"])

if not do_cols_match(X, centroids):
raise ValueError("X and centroids must have same number of columns.")

x_ptr = <uintptr_t>x_cai["data"][0]
centroids_ptr = <uintptr_t>centroids_cai["data"][0]

handle = handle if handle is not None else Handle()
cdef handle_t *h = <handle_t*><size_t>handle.getHandle()

x_c_contiguous = is_c_cont(x_cai, x_dt)
centroids_c_contiguous = is_c_cont(centroids_cai, centroids_dt)

if not x_c_contiguous or not centroids_c_contiguous:
raise ValueError("Inputs must all be c contiguous")

if not do_dtypes_match(X, centroids):
raise ValueError("Inputs must all have the same dtypes "
"(float32 or float64)")

cdef float f_cost = 0
cdef double d_cost = 0

if x_dt == np.float32:
cpp_cluster_cost(deref(h),
<float*> x_ptr,
<int> m,
<int> x_k,
<int> n_clusters,
<float*> centroids_ptr,
<float*> &f_cost)
return f_cost
elif x_dt == np.float64:
cpp_cluster_cost(deref(h),
<double*> x_ptr,
<int> m,
<int> x_k,
<int> n_clusters,
<double*> centroids_ptr,
<double*> &d_cost)
return d_cost
else:
raise ValueError("dtype %s not supported" % x_dt)
Empty file.
Empty file.
Loading