Skip to content

Commit

Permalink
[FEA] Add support for select_k on CSR matrix (#2140)
Browse files Browse the repository at this point in the history
- This PR is one part of the feature of #1969
- Add the API of 'select_k' accepting CSR as input
Authors:
  - James Rong (https://github.com/rhdong)

Approvers:
  - Ben Frederickson (https://github.com/benfred)
  - Micka (https://github.com/lowener)
  - Corey J. Nolet (https://github.com/cjnolet)

Authors:
  - rhdong (https://github.com/rhdong)

Approvers:
  - Artem M. Chirkin (https://github.com/achirkin)
  - Corey J. Nolet (https://github.com/cjnolet)

URL: #2140
  • Loading branch information
rhdong authored Apr 8, 2024
1 parent 8a68518 commit 4a20d03
Show file tree
Hide file tree
Showing 17 changed files with 1,600 additions and 198 deletions.
1 change: 1 addition & 0 deletions cpp/bench/prims/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -137,6 +137,7 @@ if(BUILD_PRIMS_BENCH)
PATH
bench/prims/sparse/bitmap_to_csr.cu
bench/prims/sparse/convert_csr.cu
bench/prims/sparse/select_k_csr.cu
bench/prims/main.cpp
)

Expand Down
287 changes: 287 additions & 0 deletions cpp/bench/prims/sparse/select_k_csr.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,287 @@
/*
* Copyright (c) 2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <common/benchmark.hpp>

#include <raft/core/device_csr_matrix.hpp>
#include <raft/core/device_mdarray.hpp>
#include <raft/core/device_mdspan.hpp>
#include <raft/core/device_resources.hpp>
#include <raft/core/resource/cuda_stream.hpp>
#include <raft/core/resources.hpp>
#include <raft/matrix/copy.cuh>
#include <raft/random/make_blobs.cuh>
#include <raft/random/rng_state.hpp>
#include <raft/sparse/convert/csr.cuh>
#include <raft/sparse/matrix/select_k.cuh>
#include <raft/util/cuda_utils.cuh>
#include <raft/util/itertools.hpp>

#include <rmm/device_uvector.hpp>

#include <random>
#include <sstream>
#include <unordered_set>
#include <vector>

namespace raft::bench::sparse {

template <typename index_t>
struct bench_param {
index_t n_rows;
index_t n_cols;
index_t top_k;
float sparsity;
bool select_min = true;
bool customized_indices = false;
};

template <typename index_t>
inline auto operator<<(std::ostream& os, const bench_param<index_t>& params) -> std::ostream&
{
os << params.n_rows << "#" << params.n_cols << "#" << params.top_k << "#" << params.sparsity;
return os;
}

template <typename value_t, typename index_t>
struct SelectKCsrTest : public fixture {
SelectKCsrTest(const bench_param<index_t>& p)
: fixture(true),
params(p),
handle(stream),
values_d(0, stream),
indptr_d(0, stream),
indices_d(0, stream),
customized_indices_d(0, stream),
dst_values_d(0, stream),
dst_indices_d(0, stream)
{
std::vector<bool> dense_values_h(params.n_rows * params.n_cols);
nnz = create_sparse_matrix(params.n_rows, params.n_cols, params.sparsity, dense_values_h);

std::vector<index_t> indices_h(nnz);
std::vector<index_t> customized_indices_h(nnz);
std::vector<index_t> indptr_h(params.n_rows + 1);

convert_to_csr(dense_values_h, params.n_rows, params.n_cols, indices_h, indptr_h);

std::vector<value_t> dst_values_h(params.n_rows * params.top_k, static_cast<value_t>(2.0f));
std::vector<index_t> dst_indices_h(params.n_rows * params.top_k,
static_cast<index_t>(params.n_rows * params.n_cols * 100));

dst_values_d.resize(params.n_rows * params.top_k, stream);
dst_indices_d.resize(params.n_rows * params.top_k, stream);
values_d.resize(nnz, stream);

if (nnz) {
auto blobs_values = raft::make_device_matrix<value_t, index_t>(handle, 1, nnz);
auto labels = raft::make_device_vector<index_t, index_t>(handle, 1);

raft::random::make_blobs<value_t, index_t>(blobs_values.data_handle(),
labels.data_handle(),
1,
nnz,
1,
stream,
false,
nullptr,
nullptr,
value_t(1.0),
false,
value_t(-10.0f),
value_t(10.0f),
uint64_t(2024));
raft::copy(values_d.data(), blobs_values.data_handle(), nnz, stream);
resource::sync_stream(handle);
}

indices_d.resize(nnz, stream);
indptr_d.resize(params.n_rows + 1, stream);

update_device(indices_d.data(), indices_h.data(), indices_h.size(), stream);
update_device(indptr_d.data(), indptr_h.data(), indptr_h.size(), stream);

if (params.customized_indices) {
customized_indices_d.resize(nnz, stream);
update_device(customized_indices_d.data(),
customized_indices_h.data(),
customized_indices_h.size(),
stream);
}
}

index_t create_sparse_matrix(index_t m, index_t n, value_t sparsity, std::vector<bool>& matrix)
{
index_t total_elements = static_cast<index_t>(m * n);
index_t num_ones = static_cast<index_t>((total_elements * 1.0f) * sparsity);
index_t res = num_ones;

for (index_t i = 0; i < total_elements; ++i) {
matrix[i] = false;
}

std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<> dis_idx(0, total_elements - 1);

while (num_ones > 0) {
size_t index = dis_idx(gen);
if (matrix[index] == false) {
matrix[index] = true;
num_ones--;
}
}
return res;
}

void convert_to_csr(std::vector<bool>& matrix,
index_t rows,
index_t cols,
std::vector<index_t>& indices,
std::vector<index_t>& indptr)
{
index_t offset_indptr = 0;
index_t offset_values = 0;
indptr[offset_indptr++] = 0;

for (index_t i = 0; i < rows; ++i) {
for (index_t j = 0; j < cols; ++j) {
if (matrix[i * cols + j]) {
indices[offset_values] = static_cast<index_t>(j);
offset_values++;
}
}
indptr[offset_indptr++] = static_cast<index_t>(offset_values);
}
}

template <typename data_t>
std::optional<data_t> get_opt_var(data_t x)
{
if (params.customized_indices) {
return x;
} else {
return std::nullopt;
}
}

void run_benchmark(::benchmark::State& state) override
{
std::ostringstream label_stream;
label_stream << params;
state.SetLabel(label_stream.str());

auto in_val_structure = raft::make_device_compressed_structure_view<index_t, index_t, index_t>(
indptr_d.data(),
indices_d.data(),
params.n_rows,
params.n_cols,
static_cast<index_t>(indices_d.size()));

auto in_val =
raft::make_device_csr_matrix_view<const value_t>(values_d.data(), in_val_structure);

std::optional<raft::device_vector_view<const index_t, index_t>> in_idx;

in_idx = get_opt_var(
raft::make_device_vector_view<const index_t, index_t>(customized_indices_d.data(), nnz));

auto out_val = raft::make_device_matrix_view<value_t, index_t, raft::row_major>(
dst_values_d.data(), params.n_rows, params.top_k);
auto out_idx = raft::make_device_matrix_view<index_t, index_t, raft::row_major>(
dst_indices_d.data(), params.n_rows, params.top_k);

raft::sparse::matrix::select_k(handle, in_val, in_idx, out_val, out_idx, params.select_min);
resource::sync_stream(handle);
loop_on_state(state, [this, &in_val, &in_idx, &out_val, &out_idx]() {
raft::sparse::matrix::select_k(
handle, in_val, in_idx, out_val, out_idx, params.select_min, false);
resource::sync_stream(handle);
});
}

protected:
const raft::device_resources handle;

bench_param<index_t> params;
index_t nnz;

rmm::device_uvector<value_t> values_d;
rmm::device_uvector<index_t> indptr_d;
rmm::device_uvector<index_t> indices_d;
rmm::device_uvector<index_t> customized_indices_d;

rmm::device_uvector<value_t> dst_values_d;
rmm::device_uvector<index_t> dst_indices_d;
}; // struct SelectKCsrTest

template <typename index_t>
const std::vector<bench_param<index_t>> getInputs()
{
std::vector<bench_param<index_t>> param_vec;
struct TestParams {
index_t m;
index_t n;
index_t k;
};

const std::vector<TestParams> params_group{
{20000, 500, 1}, {20000, 500, 2}, {20000, 500, 4}, {20000, 500, 8},
{20000, 500, 16}, {20000, 500, 32}, {20000, 500, 64}, {20000, 500, 128},
{20000, 500, 256},

{1000, 10000, 1}, {1000, 10000, 2}, {1000, 10000, 4}, {1000, 10000, 8},
{1000, 10000, 16}, {1000, 10000, 32}, {1000, 10000, 64}, {1000, 10000, 128},
{1000, 10000, 256},

{100, 100000, 1}, {100, 100000, 2}, {100, 100000, 4}, {100, 100000, 8},
{100, 100000, 16}, {100, 100000, 32}, {100, 100000, 64}, {100, 100000, 128},
{100, 100000, 256},

{10, 1000000, 1}, {10, 1000000, 2}, {10, 1000000, 4}, {10, 1000000, 8},
{10, 1000000, 16}, {10, 1000000, 32}, {10, 1000000, 64}, {10, 1000000, 128},
{10, 1000000, 256},

{10, 1000000, 1}, {10, 1000000, 2}, {10, 1000000, 4}, {10, 1000000, 8},
{10, 1000000, 16}, {10, 1000000, 32}, {10, 1000000, 64}, {10, 1000000, 128},
{10, 1000000, 256},

{10, 1000000, 1}, {10, 1000000, 16}, {10, 1000000, 64}, {10, 1000000, 128},
{10, 1000000, 256},

{10, 1000000, 1}, {10, 1000000, 16}, {10, 1000000, 64}, {10, 1000000, 128},
{10, 1000000, 256}, {1000, 10000, 1}, {1000, 10000, 16}, {1000, 10000, 64},
{1000, 10000, 128}, {1000, 10000, 256},

{10, 1000000, 1}, {10, 1000000, 16}, {10, 1000000, 64}, {10, 1000000, 128},
{10, 1000000, 256}, {1000, 10000, 1}, {1000, 10000, 16}, {1000, 10000, 64},
{1000, 10000, 128}, {1000, 10000, 256}};

param_vec.reserve(params_group.size());
for (TestParams params : params_group) {
param_vec.push_back(bench_param<index_t>({params.m, params.n, params.k, 0.1}));
}
for (TestParams params : params_group) {
param_vec.push_back(bench_param<index_t>({params.m, params.n, params.k, 0.2}));
}
for (TestParams params : params_group) {
param_vec.push_back(bench_param<index_t>({params.m, params.n, params.k, 0.5}));
}
return param_vec;
}

RAFT_BENCH_REGISTER((SelectKCsrTest<float, uint32_t>), "", getInputs<uint32_t>());

} // namespace raft::bench::sparse
Loading

0 comments on commit 4a20d03

Please sign in to comment.