-
Notifications
You must be signed in to change notification settings - Fork 197
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
197 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,197 @@ | ||
/* | ||
* Copyright (c) 2022-2023, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include <common/benchmark.hpp> | ||
#include <cub/cub.cuh> | ||
#include <raft/core/device_mdarray.hpp> | ||
#include <raft/core/device_resources.hpp> | ||
#include <raft/core/host_mdarray.hpp> | ||
#include <raft/core/operators.hpp> | ||
#include <raft/random/permute.cuh> | ||
#include <raft/random/rng.cuh> | ||
#include <raft/random/sample_without_replacement.cuh> | ||
#include <raft/spatial/knn/detail/ann_utils.cuh> | ||
#include <raft/util/cudart_utils.hpp> | ||
#include <rmm/device_scalar.hpp> | ||
|
||
namespace raft::bench::random { | ||
|
||
struct sample_inputs { | ||
int n_samples; | ||
int n_train; | ||
int method; | ||
}; // struct sample_inputs | ||
|
||
template <typename IdxT> | ||
auto excess_subsample(raft::resources const& res, IdxT n_samples, IdxT n_subsamples, int seed) | ||
-> raft::device_vector<IdxT, IdxT> | ||
{ | ||
RAFT_EXPECTS(n_subsamples <= n_samples, "Cannot have more training samples than dataset vectors"); | ||
auto stream = resource::get_cuda_stream(res); | ||
|
||
auto rnd_idx = | ||
raft::make_device_vector<IdxT, IdxT>(res, std::min<IdxT>(1.5 * n_subsamples, n_samples)); | ||
auto linear_idx = raft::make_device_vector<IdxT, IdxT>(res, rnd_idx.size()); | ||
raft::linalg::map_offset(res, linear_idx.view(), identity_op()); | ||
|
||
raft::random::RngState state(137ULL); | ||
raft::random::uniformInt( | ||
res, state, rnd_idx.data_handle(), rnd_idx.size(), IdxT(0), IdxT(n_samples)); | ||
|
||
// Sort indices according to rnd keys | ||
size_t workspace_size = 0; | ||
cub::DeviceMergeSort::SortPairs(nullptr, | ||
workspace_size, | ||
rnd_idx.data_handle(), | ||
linear_idx.data_handle(), | ||
rnd_idx.size(), | ||
raft::less_op{}); | ||
float GiB = 1073741824.0f; | ||
RAFT_LOG_INFO("worksize sort %6.1f GiB", workspace_size / GiB); | ||
auto workspace = raft::make_device_vector<char, IdxT>(res, workspace_size); | ||
cub::DeviceMergeSort::SortPairs(nullptr, | ||
workspace_size, | ||
rnd_idx.data_handle(), | ||
linear_idx.data_handle(), | ||
rnd_idx.size(), | ||
raft::less_op{}); | ||
|
||
if (rnd_idx.size() == static_cast<size_t>(n_samples)) { | ||
// We shuffled the linear_idx array by sorting it according to rnd_idx. | ||
// We return the first n_subsamples elements. | ||
if (n_subsamples == n_samples) { return linear_idx; } | ||
rnd_idx = raft::make_device_vector<IdxT, IdxT>(res, n_subsamples); | ||
raft::copy(rnd_idx.data_handle(), linear_idx.data_handle(), n_subsamples, stream); | ||
return rnd_idx; | ||
} | ||
// Else we do a rejection sampling (or excess sampling): we generated more random indices than | ||
// needed and reject the duplicates. | ||
auto keys_out = raft::make_device_vector<IdxT, IdxT>(res, rnd_idx.size()); | ||
auto values_out = raft::make_device_vector<IdxT, IdxT>(res, rnd_idx.size()); | ||
rmm::device_scalar<IdxT> num_selected(stream); | ||
size_t worksize2 = 0; | ||
cub::DeviceSelect::UniqueByKey(nullptr, | ||
worksize2, | ||
rnd_idx.data_handle(), | ||
linear_idx.data_handle(), | ||
keys_out.data_handle(), | ||
values_out.data_handle(), | ||
num_selected.data(), | ||
rnd_idx.size(), | ||
stream); | ||
|
||
RAFT_LOG_INFO("worksize unique %6.1f GiB", worksize2 / GiB); | ||
|
||
if (worksize2 > workspace.size()) { | ||
workspace = raft::make_device_vector<char, IdxT>(res, worksize2); | ||
} | ||
|
||
cub::DeviceSelect::UniqueByKey(workspace.data_handle(), | ||
worksize2, | ||
rnd_idx.data_handle(), | ||
linear_idx.data_handle(), | ||
keys_out.data_handle(), | ||
values_out.data_handle(), | ||
num_selected.data(), | ||
rnd_idx.size(), | ||
stream); | ||
|
||
IdxT selected = num_selected.value(stream); | ||
|
||
if (selected < n_subsamples) { | ||
RAFT_LOG_WARN("Subsampling returned with less unique indices (%zu) than requested (%zu)", | ||
(size_t)selected, | ||
(size_t)n_subsamples); | ||
|
||
} else { | ||
RAFT_LOG_INFO( | ||
"Subsampling unique indices (%zu) requested (%zu)", (size_t)selected, (size_t)n_subsamples); | ||
} | ||
|
||
// need to shuffle again | ||
cub::DeviceMergeSort::SortPairs(workspace.data_handle(), | ||
worksize2, | ||
linear_idx.data_handle(), | ||
rnd_idx.data_handle(), | ||
n_samples, | ||
raft::less_op{}); | ||
|
||
if (n_subsamples == n_samples) { return linear_idx; } | ||
values_out = raft::make_device_vector<IdxT, IdxT>(res, n_subsamples); | ||
raft::copy(values_out.data_handle(), rnd_idx.data_handle(), n_subsamples, stream); | ||
return values_out; | ||
} | ||
|
||
template <typename IdxT> | ||
auto bernoulli_subsample(raft::resources const& res, IdxT n_samples, IdxT n_subsamples, int seed) | ||
-> raft::device_vector<IdxT, IdxT> | ||
{ | ||
RAFT_EXPECTS(n_subsamples <= n_samples, "Cannot have more training samples than dataset vectors"); | ||
|
||
auto indices = raft::make_device_vector<IdxT, IdxT>(res, n_subsamples); | ||
raft::random::RngState state(123456ULL); | ||
raft::random::uniformInt( | ||
res, state, indices.data_handle(), n_subsamples, IdxT(0), IdxT(n_samples)); | ||
return indices; | ||
} | ||
|
||
template <typename T> | ||
struct sample : public fixture { | ||
sample(const sample_inputs& p) | ||
: params(p), | ||
in(make_device_vector<T, int64_t>(res, p.n_samples)), | ||
out(make_device_vector<T, int64_t>(res, p.n_train)) | ||
{ | ||
raft::random::RngState r(123456ULL); | ||
} | ||
|
||
void run_benchmark(::benchmark::State& state) override | ||
{ | ||
raft::random::RngState r(123456ULL); | ||
loop_on_state(state, [this, &r]() { | ||
if (params.method == 0) { | ||
this->out = raft::spatial::knn::detail::utils::get_subsample_indices<T>( | ||
this->res, this->params.n_samples, this->params.n_train, 137); | ||
} else if (params.method == 1) { | ||
this->out = | ||
bernoulli_subsample<T>(this->res, this->params.n_samples, this->params.n_train, 137); | ||
} else if (params.method == 2) { | ||
this->out = | ||
excess_subsample<T>(this->res, this->params.n_samples, this->params.n_train, 137); | ||
} | ||
// raft::random::permute( | ||
// perms.data(), out.data(), in.data(), params.cols, params.rows, params.rowMajor, | ||
// stream); | ||
}); | ||
} | ||
|
||
private: | ||
raft::device_resources res; | ||
sample_inputs params; | ||
raft::device_vector<T, int64_t> out, in; | ||
}; // struct sample | ||
|
||
const std::vector<sample_inputs> input_vecs = {{10000000, 1000000, 0}, | ||
{10000000, 10000000, 0}, | ||
{100000000, 10000000, 1}, | ||
{100000000, 100000000, 1}, | ||
{100000000, 10000000, 2}, | ||
{100000000, 50000000, 2}, | ||
{100000000, 100000000, 2}}; | ||
|
||
RAFT_BENCH_REGISTER(sample<int64_t>, "", input_vecs); | ||
|
||
} // namespace raft::bench::random |