Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FEA] Buffered and In-Memory Sampling #4628

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -197,10 +197,8 @@ def sample(

if g.is_homogeneous:
indices = torch.concat(list(indices))
ds.sample_from_nodes(indices.long(), batch_size=batch_size)
return HomogeneousSampleReader(
ds.get_reader(), self.output_format, self.edge_dir
)
reader = ds.sample_from_nodes(indices.long(), batch_size=batch_size)
return HomogeneousSampleReader(reader, self.output_format, self.edge_dir)

raise ValueError(
"Sampling heterogeneous graphs is currently"
Expand Down
15 changes: 9 additions & 6 deletions python/cugraph-dgl/cugraph_dgl/dataloading/sampler.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,6 @@
create_homogeneous_sampled_graphs_from_tensors_csc,
)

from cugraph.gnn import DistSampleReader

from cugraph.utilities.utils import import_optional

Expand All @@ -33,14 +32,18 @@ class SampleReader:
Iterator that processes results from the cuGraph distributed sampler.
"""

def __init__(self, base_reader: DistSampleReader, output_format: str = "dgl.Block"):
def __init__(
self,
base_reader: Iterator[Tuple[Dict[str, "torch.Tensor"], int, int]],
output_format: str = "dgl.Block",
):
"""
Constructs a new SampleReader.
Parameters
----------
base_reader: DistSampleReader
The reader responsible for loading saved samples produced by
base_reader: Iterator[Tuple[Dict[str, "torch.Tensor"], int, int]]
The iterator responsible for loading saved samples produced by
the cuGraph distributed sampler.
"""
self.__output_format = output_format
Expand Down Expand Up @@ -83,7 +86,7 @@ class HomogeneousSampleReader(SampleReader):

def __init__(
self,
base_reader: DistSampleReader,
base_reader: Iterator[Tuple[Dict[str, "torch.Tensor"], int, int]],
output_format: str = "dgl.Block",
edge_dir="in",
):
Expand All @@ -92,7 +95,7 @@ def __init__(
Parameters
----------
base_reader: DistSampleReader
base_reader: Iterator[Tuple[Dict[str, "torch.Tensor"], int, int]]
The reader responsible for loading saved samples produced by
the cuGraph distributed sampler.
output_format: str
Expand Down
24 changes: 18 additions & 6 deletions python/cugraph-pyg/cugraph_pyg/examples/gcn_dist_mnmg.py
Original file line number Diff line number Diff line change
Expand Up @@ -185,6 +185,8 @@ def run_train(
wall_clock_start,
tempdir=None,
num_layers=3,
in_memory=False,
seeds_per_call=-1,
):
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=0.0005)

Expand All @@ -196,20 +198,23 @@ def run_train(
from cugraph_pyg.loader import NeighborLoader

ix_train = split_idx["train"].cuda()
train_path = os.path.join(tempdir, f"train_{global_rank}")
os.mkdir(train_path)
train_path = None if in_memory else os.path.join(tempdir, f"train_{global_rank}")
if train_path:
os.mkdir(train_path)
train_loader = NeighborLoader(
data,
input_nodes=ix_train,
directory=train_path,
shuffle=True,
drop_last=True,
local_seeds_per_call=seeds_per_call if seeds_per_call > 0 else None,
**kwargs,
)

ix_test = split_idx["test"].cuda()
test_path = os.path.join(tempdir, f"test_{global_rank}")
os.mkdir(test_path)
test_path = None if in_memory else os.path.join(tempdir, f"test_{global_rank}")
if test_path:
os.mkdir(test_path)
test_loader = NeighborLoader(
data,
input_nodes=ix_test,
Expand All @@ -221,14 +226,16 @@ def run_train(
)

ix_valid = split_idx["valid"].cuda()
valid_path = os.path.join(tempdir, f"valid_{global_rank}")
os.mkdir(valid_path)
valid_path = None if in_memory else os.path.join(tempdir, f"valid_{global_rank}")
if valid_path:
os.mkdir(valid_path)
valid_loader = NeighborLoader(
data,
input_nodes=ix_valid,
directory=valid_path,
shuffle=True,
drop_last=True,
local_seeds_per_call=seeds_per_call if seeds_per_call > 0 else None,
**kwargs,
)

Expand Down Expand Up @@ -347,6 +354,9 @@ def parse_args():
parser.add_argument("--skip_partition", action="store_true")
parser.add_argument("--wg_mem_type", type=str, default="distributed")

parser.add_argument("--in_memory", action="store_true", default=False)
parser.add_argument("--seeds_per_call", type=int, default=-1)

return parser.parse_args()


Expand Down Expand Up @@ -429,6 +439,8 @@ def parse_args():
wall_clock_start,
tempdir,
args.num_layers,
args.in_memory,
args.seeds_per_call,
)
else:
warnings.warn("This script should be run with 'torchrun`. Exiting.")
24 changes: 20 additions & 4 deletions python/cugraph-pyg/cugraph_pyg/examples/gcn_dist_sg.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,17 +91,28 @@ def test(loader: NeighborLoader, val_steps: Optional[int] = None):


def create_loader(
data, num_neighbors, input_nodes, replace, batch_size, samples_dir, stage_name
data,
num_neighbors,
input_nodes,
replace,
batch_size,
samples_dir,
stage_name,
local_seeds_per_call,
):
directory = os.path.join(samples_dir, stage_name)
os.mkdir(directory)
if samples_dir is not None:
directory = os.path.join(samples_dir, stage_name)
os.mkdir(directory)
else:
directory = None
return NeighborLoader(
data,
num_neighbors=num_neighbors,
input_nodes=input_nodes,
replace=replace,
batch_size=batch_size,
directory=directory,
local_seeds_per_call=local_seeds_per_call,
)


Expand Down Expand Up @@ -147,6 +158,8 @@ def parse_args():
parser.add_argument("--tempdir_root", type=str, default=None)
parser.add_argument("--dataset_root", type=str, default="dataset")
parser.add_argument("--dataset", type=str, default="ogbn-products")
parser.add_argument("--in_memory", action="store_true", default=False)
parser.add_argument("--seeds_per_call", type=int, default=-1)

return parser.parse_args()

Expand All @@ -170,7 +183,10 @@ def parse_args():
"num_neighbors": [args.fan_out] * args.num_layers,
"replace": False,
"batch_size": args.batch_size,
"samples_dir": samples_dir,
"samples_dir": None if args.in_memory else samples_dir,
"local_seeds_per_call": None
if args.seeds_per_call <= 0
else args.seeds_per_call,
}

train_loader = create_loader(
Expand Down
23 changes: 17 additions & 6 deletions python/cugraph-pyg/cugraph_pyg/examples/gcn_dist_snmg.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,6 +86,8 @@ def run_train(
wall_clock_start,
tempdir=None,
num_layers=3,
in_memory=False,
seeds_per_call=-1,
):

init_pytorch_worker(
Expand Down Expand Up @@ -119,20 +121,23 @@ def run_train(
dist.barrier()

ix_train = torch.tensor_split(split_idx["train"], world_size)[rank].cuda()
train_path = os.path.join(tempdir, f"train_{rank}")
os.mkdir(train_path)
train_path = None if in_memory else os.path.join(tempdir, f"train_{rank}")
if train_path:
os.mkdir(train_path)
train_loader = NeighborLoader(
(feature_store, graph_store),
input_nodes=ix_train,
directory=train_path,
shuffle=True,
drop_last=True,
local_seeds_per_call=seeds_per_call if seeds_per_call > 0 else None,
**kwargs,
)

ix_test = torch.tensor_split(split_idx["test"], world_size)[rank].cuda()
test_path = os.path.join(tempdir, f"test_{rank}")
os.mkdir(test_path)
test_path = None if in_memory else os.path.join(tempdir, f"test_{rank}")
if test_path:
os.mkdir(test_path)
test_loader = NeighborLoader(
(feature_store, graph_store),
input_nodes=ix_test,
Expand All @@ -144,14 +149,16 @@ def run_train(
)

ix_valid = torch.tensor_split(split_idx["valid"], world_size)[rank].cuda()
valid_path = os.path.join(tempdir, f"valid_{rank}")
os.mkdir(valid_path)
valid_path = None if in_memory else os.path.join(tempdir, f"valid_{rank}")
if valid_path:
os.mkdir(valid_path)
valid_loader = NeighborLoader(
(feature_store, graph_store),
input_nodes=ix_valid,
directory=valid_path,
shuffle=True,
drop_last=True,
local_seeds_per_call=seeds_per_call if seeds_per_call > 0 else None,
**kwargs,
)

Expand Down Expand Up @@ -269,6 +276,8 @@ def run_train(
parser.add_argument("--tempdir_root", type=str, default=None)
parser.add_argument("--dataset_root", type=str, default="dataset")
parser.add_argument("--dataset", type=str, default="ogbn-products")
parser.add_argument("--in_memory", action="store_true", default=False)
parser.add_argument("--seeds_per_call", type=int, default=-1)

parser.add_argument(
"--n_devices",
Expand Down Expand Up @@ -322,6 +331,8 @@ def run_train(
wall_clock_start,
tempdir,
args.num_layers,
args.in_memory,
args.seeds_per_call,
),
nprocs=world_size,
join=True,
Expand Down
28 changes: 13 additions & 15 deletions python/cugraph-pyg/cugraph_pyg/loader/neighbor_loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,6 @@
# limitations under the License.

import warnings
import tempfile

from typing import Union, Tuple, Optional, Callable, List, Dict

Expand Down Expand Up @@ -123,14 +122,14 @@ def __init__(
The number of input nodes per output minibatch.
See torch.utils.dataloader.
directory: str (optional, default=None)
The directory where samples will be temporarily stored.
It is recommend that this be set by the user, usually
setting it to a tempfile.TemporaryDirectory with a context
The directory where samples will be temporarily stored,
if spilling samples to disk. If None, this loader
will perform buffered in-memory sampling.
If writing to disk, setting this argument
to a tempfile.TemporaryDirectory with a context
manager is a good option but depending on the filesystem,
you may want to choose an alternative location with fast I/O
intead.
If not set, this will create a TemporaryDirectory that will
persist until this object is garbage collected.
See cugraph.gnn.DistSampleWriter.
batches_per_partition: int (optional, default=256)
The number of batches per partition if writing samples to
Expand Down Expand Up @@ -182,20 +181,19 @@ def __init__(
# Will eventually automatically convert these objects to cuGraph objects.
raise NotImplementedError("Currently can't accept non-cugraph graphs")

if directory is None:
warnings.warn("Setting a directory to store samples is recommended.")
self._tempdir = tempfile.TemporaryDirectory()
directory = self._tempdir.name

if compression is None:
compression = "CSR"
elif compression not in ["CSR", "COO"]:
raise ValueError("Invalid value for compression (expected 'CSR' or 'COO')")

writer = DistSampleWriter(
directory=directory,
batches_per_partition=batches_per_partition,
format=format,
writer = (
None
if directory is None
else DistSampleWriter(
directory=directory,
batches_per_partition=batches_per_partition,
format=format,
)
)

feature_store, graph_store = data
Expand Down
20 changes: 12 additions & 8 deletions python/cugraph-pyg/cugraph_pyg/sampler/sampler.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
from typing import Optional, Iterator, Union, Dict, Tuple

from cugraph.utilities.utils import import_optional
from cugraph.gnn import DistSampler, DistSampleReader
from cugraph.gnn import DistSampler

from .sampler_utils import filter_cugraph_pyg_store

Expand Down Expand Up @@ -152,13 +152,15 @@ class SampleReader:
Iterator that processes results from the cuGraph distributed sampler.
"""

def __init__(self, base_reader: DistSampleReader):
def __init__(
self, base_reader: Iterator[Tuple[Dict[str, "torch.Tensor"], int, int]]
):
"""
Constructs a new SampleReader.

Parameters
----------
base_reader: DistSampleReader
base_reader: Iterator[Tuple[Dict[str, "torch.Tensor"], int, int]]
The reader responsible for loading saved samples produced by
the cuGraph distributed sampler.
"""
Expand Down Expand Up @@ -202,14 +204,16 @@ class HomogeneousSampleReader(SampleReader):
produced by the cuGraph distributed sampler.
"""

def __init__(self, base_reader: DistSampleReader):
def __init__(
self, base_reader: Iterator[Tuple[Dict[str, "torch.Tensor"], int, int]]
):
"""
Constructs a new HomogeneousSampleReader

Parameters
----------
base_reader: DistSampleReader
The reader responsible for loading saved samples produced by
base_reader: Iterator[Tuple[Dict[str, "torch.Tensor"], int, int]]
The iterator responsible for loading saved samples produced by
the cuGraph distributed sampler.
"""
super().__init__(base_reader)
Expand Down Expand Up @@ -353,7 +357,7 @@ def sample_from_nodes(
"torch_geometric.sampler.SamplerOutput",
]
]:
self.__sampler.sample_from_nodes(
reader = self.__sampler.sample_from_nodes(
index.node, batch_size=self.__batch_size, **kwargs
)

Expand All @@ -362,7 +366,7 @@ def sample_from_nodes(
len(edge_attrs) == 1
and edge_attrs[0].edge_type[0] == edge_attrs[0].edge_type[2]
):
return HomogeneousSampleReader(self.__sampler.get_reader())
return HomogeneousSampleReader(reader)
else:
# TODO implement heterogeneous sampling
raise NotImplementedError(
Expand Down
5 changes: 4 additions & 1 deletion python/cugraph/cugraph/gnn/data_loading/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,9 +14,12 @@
from cugraph.gnn.data_loading.bulk_sampler import BulkSampler
from cugraph.gnn.data_loading.dist_sampler import (
DistSampler,
NeighborSampler,
)
from cugraph.gnn.data_loading.dist_io import (
DistSampleWriter,
DistSampleReader,
NeighborSampler,
BufferedSampleReader,
)


Expand Down
Loading
Loading