Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

nx-cugraph: add more shortest path algorithms #4199

Merged
merged 13 commits into from
Mar 13, 2024
Merged
Show file tree
Hide file tree
Changes from 11 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 20 additions & 5 deletions python/nx-cugraph/README.md
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Would be nice to explain the basic way cuGraph runs these algos. How the "conversions" are or are not done.

Original file line number Diff line number Diff line change
Expand Up @@ -95,8 +95,6 @@ Below is the list of algorithms that are currently supported in nx-cugraph.

<pre>
<a href="https://networkx.org/documentation/stable/reference/algorithms/bipartite.html#module-networkx.algorithms.bipartite">bipartite</a>
├─ <a href="https://networkx.org/documentation/stable/reference/algorithms/bipartite.html#module-networkx.algorithms.bipartite.basic">basic</a>
│ └─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.bipartite.basic.is_bipartite.html#networkx.algorithms.bipartite.basic.is_bipartite">is_bipartite</a>
rlratzel marked this conversation as resolved.
Show resolved Hide resolved
└─ <a href="https://networkx.org/documentation/stable/reference/algorithms/bipartite.html#module-networkx.algorithms.bipartite.generators">generators</a>
└─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.bipartite.generators.complete_bipartite_graph.html#networkx.algorithms.bipartite.generators.complete_bipartite_graph">complete_bipartite_graph</a>
<a href="https://networkx.org/documentation/stable/reference/algorithms/centrality.html#module-networkx.algorithms.centrality">centrality</a>
Expand Down Expand Up @@ -152,9 +150,26 @@ Below is the list of algorithms that are currently supported in nx-cugraph.
├─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.reciprocity.overall_reciprocity.html#networkx.algorithms.reciprocity.overall_reciprocity">overall_reciprocity</a>
└─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.reciprocity.reciprocity.html#networkx.algorithms.reciprocity.reciprocity">reciprocity</a>
<a href="https://networkx.org/documentation/stable/reference/algorithms/shortest_paths.html">shortest_paths</a>
└─ <a href="https://networkx.org/documentation/stable/reference/algorithms/shortest_paths.html#module-networkx.algorithms.shortest_paths.unweighted">unweighted</a>
├─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.unweighted.single_source_shortest_path_length.html#networkx.algorithms.shortest_paths.unweighted.single_source_shortest_path_length">single_source_shortest_path_length</a>
└─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.unweighted.single_target_shortest_path_length.html#networkx.algorithms.shortest_paths.unweighted.single_target_shortest_path_length">single_target_shortest_path_length</a>
├─ <a href="https://networkx.org/documentation/stable/reference/algorithms/shortest_paths.html#module-networkx.algorithms.shortest_paths.generic">generic</a>
│ ├─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.generic.has_path.html#networkx.algorithms.shortest_paths.generic.has_path">has_path</a>
│ ├─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.generic.shortest_path.html#networkx.algorithms.shortest_paths.generic.shortest_path">shortest_path</a>
│ └─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.generic.shortest_path_length.html#networkx.algorithms.shortest_paths.generic.shortest_path_length">shortest_path_length</a>
├─ <a href="https://networkx.org/documentation/stable/reference/algorithms/shortest_paths.html#module-networkx.algorithms.shortest_paths.unweighted">unweighted</a>
│ ├─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.unweighted.all_pairs_shortest_path.html#networkx.algorithms.shortest_paths.unweighted.all_pairs_shortest_path">all_pairs_shortest_path</a>
│ ├─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.unweighted.all_pairs_shortest_path_length.html#networkx.algorithms.shortest_paths.unweighted.all_pairs_shortest_path_length">all_pairs_shortest_path_length</a>
│ ├─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.unweighted.bidirectional_shortest_path.html#networkx.algorithms.shortest_paths.unweighted.bidirectional_shortest_path">bidirectional_shortest_path</a>
│ ├─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.unweighted.single_source_shortest_path.html#networkx.algorithms.shortest_paths.unweighted.single_source_shortest_path">single_source_shortest_path</a>
│ ├─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.unweighted.single_source_shortest_path_length.html#networkx.algorithms.shortest_paths.unweighted.single_source_shortest_path_length">single_source_shortest_path_length</a>
│ ├─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.unweighted.single_target_shortest_path.html#networkx.algorithms.shortest_paths.unweighted.single_target_shortest_path">single_target_shortest_path</a>
│ └─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.unweighted.single_target_shortest_path_length.html#networkx.algorithms.shortest_paths.unweighted.single_target_shortest_path_length">single_target_shortest_path_length</a>
└─ <a href="https://networkx.org/documentation/stable/reference/algorithms/shortest_paths.html#module-networkx.algorithms.shortest_paths.weighted">weighted</a>
├─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.all_pairs_bellman_ford_path.html#networkx.algorithms.shortest_paths.weighted.all_pairs_bellman_ford_path">all_pairs_bellman_ford_path</a>
├─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.all_pairs_bellman_ford_path_length.html#networkx.algorithms.shortest_paths.weighted.all_pairs_bellman_ford_path_length">all_pairs_bellman_ford_path_length</a>
├─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.bellman_ford_path.html#networkx.algorithms.shortest_paths.weighted.bellman_ford_path">bellman_ford_path</a>
├─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.bellman_ford_path_length.html#networkx.algorithms.shortest_paths.weighted.bellman_ford_path_length">bellman_ford_path_length</a>
├─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.single_source_bellman_ford.html#networkx.algorithms.shortest_paths.weighted.single_source_bellman_ford">single_source_bellman_ford</a>
├─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.single_source_bellman_ford_path.html#networkx.algorithms.shortest_paths.weighted.single_source_bellman_ford_path">single_source_bellman_ford_path</a>
└─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.single_source_bellman_ford_path_length.html#networkx.algorithms.shortest_paths.weighted.single_source_bellman_ford_path_length">single_source_bellman_ford_path_length</a>
<a href="https://networkx.org/documentation/stable/reference/algorithms/traversal.html">traversal</a>
└─ <a href="https://networkx.org/documentation/stable/reference/algorithms/traversal.html#module-networkx.algorithms.traversal.breadth_first_search">breadth_first_search</a>
├─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.traversal.breadth_first_search.bfs_edges.html#networkx.algorithms.traversal.breadth_first_search.bfs_edges">bfs_edges</a>
Expand Down
52 changes: 51 additions & 1 deletion python/nx-cugraph/_nx_cugraph/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,15 +33,22 @@
# "description": "TODO",
"functions": {
# BEGIN: functions
"all_pairs_bellman_ford_path",
"all_pairs_bellman_ford_path_length",
"all_pairs_shortest_path",
"all_pairs_shortest_path_length",
"ancestors",
"average_clustering",
"barbell_graph",
"bellman_ford_path",
"bellman_ford_path_length",
"betweenness_centrality",
"bfs_edges",
"bfs_layers",
"bfs_predecessors",
"bfs_successors",
"bfs_tree",
"bidirectional_shortest_path",
"bull_graph",
"caveman_graph",
"chvatal_graph",
Expand Down Expand Up @@ -70,14 +77,14 @@
"from_scipy_sparse_array",
"frucht_graph",
"generic_bfs_edges",
"has_path",
"heawood_graph",
"hits",
"house_graph",
"house_x_graph",
"icosahedral_graph",
"in_degree_centrality",
"is_arborescence",
"is_bipartite",
"is_branching",
"is_connected",
"is_forest",
Expand Down Expand Up @@ -110,7 +117,14 @@
"reciprocity",
"reverse",
"sedgewick_maze_graph",
"shortest_path",
"shortest_path_length",
"single_source_bellman_ford",
"single_source_bellman_ford_path",
"single_source_bellman_ford_path_length",
"single_source_shortest_path",
"single_source_shortest_path_length",
"single_target_shortest_path",
"single_target_shortest_path_length",
"star_graph",
"tadpole_graph",
Expand All @@ -128,7 +142,11 @@
},
"additional_docs": {
# BEGIN: additional_docs
"all_pairs_bellman_ford_path": "Negative cycles are not yet supported! ``NotImplementedError`` will be raised if there are negative edge weights. We plan to support negative edge weights soon. Also, callable ``weight`` argument is not supported.",
"all_pairs_bellman_ford_path_length": "Negative cycles are not yet supported! ``NotImplementedError`` will be raised if there are negative edge weights. We plan to support negative edge weights soon. Also, callable ``weight`` argument is not supported.",
"average_clustering": "Directed graphs and `weight` parameter are not yet supported.",
"bellman_ford_path": "Negative cycles are not yet supported! ``NotImplementedError`` will be raised if there are negative edge weights. We plan to support negative edge weights soon. Also, callable ``weight`` argument is not supported.",
"bellman_ford_path_length": "Negative cycles are not yet supported! ``NotImplementedError`` will be raised if there are negative edge weights. We plan to support negative edge weights soon. Also, callable ``weight`` argument is not supported.",
"betweenness_centrality": "`weight` parameter is not yet supported, and RNG with seed may be different.",
"bfs_edges": "`sort_neighbors` parameter is not yet supported.",
"bfs_predecessors": "`sort_neighbors` parameter is not yet supported.",
Expand All @@ -147,11 +165,28 @@
"katz_centrality": "`nstart` isn't used (but is checked), and `normalized=False` is not supported.",
"louvain_communities": "`seed` parameter is currently ignored, and self-loops are not yet supported.",
"pagerank": "`dangling` parameter is not supported, but it is checked for validity.",
"shortest_path": "Negative weights are not yet supported, and method is ununsed.",
"shortest_path_length": "Negative weights are not yet supported, and method is ununsed.",
"single_source_bellman_ford": "Negative cycles are not yet supported! ``NotImplementedError`` will be raised if there are negative edge weights. We plan to support negative edge weights soon. Also, callable ``weight`` argument is not supported.",
rlratzel marked this conversation as resolved.
Show resolved Hide resolved
"single_source_bellman_ford_path": "Negative cycles are not yet supported! ``NotImplementedError`` will be raised if there are negative edge weights. We plan to support negative edge weights soon. Also, callable ``weight`` argument is not supported.",
"single_source_bellman_ford_path_length": "Negative cycles are not yet supported! ``NotImplementedError`` will be raised if there are negative edge weights. We plan to support negative edge weights soon. Also, callable ``weight`` argument is not supported.",
"transitivity": "Directed graphs are not yet supported.",
# END: additional_docs
},
"additional_parameters": {
# BEGIN: additional_parameters
"all_pairs_bellman_ford_path": {
"dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.",
},
"all_pairs_bellman_ford_path_length": {
"dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.",
},
"bellman_ford_path": {
"dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.",
},
"bellman_ford_path_length": {
"dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.",
},
"eigenvector_centrality": {
"dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.",
},
Expand All @@ -169,6 +204,21 @@
"pagerank": {
"dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.",
},
"shortest_path": {
"dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.",
},
"shortest_path_length": {
"dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.",
},
"single_source_bellman_ford": {
"dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.",
},
"single_source_bellman_ford_path": {
"dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.",
},
"single_source_bellman_ford_path_length": {
"dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.",
},
# END: additional_parameters
},
}
Expand Down
4 changes: 2 additions & 2 deletions python/nx-cugraph/lint.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ repos:
- id: black
# - id: black-jupyter
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.2.2
rev: v0.3.2
hooks:
- id: ruff
args: [--fix-only, --show-fixes] # --unsafe-fixes]
Expand All @@ -77,7 +77,7 @@ repos:
additional_dependencies: [tomli]
files: ^(nx_cugraph|docs)/
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.2.2
rev: v0.3.2
hooks:
- id: ruff
- repo: https://github.com/pre-commit/pre-commit-hooks
Expand Down
2 changes: 1 addition & 1 deletion python/nx-cugraph/nx_cugraph/algorithms/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@
traversal,
tree,
)
from .bipartite import complete_bipartite_graph, is_bipartite
from .bipartite import complete_bipartite_graph
from .centrality import *
from .cluster import *
from .components import *
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -10,5 +10,4 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .basic import *
from .generators import *
31 changes: 0 additions & 31 deletions python/nx-cugraph/nx_cugraph/algorithms/bipartite/basic.py

This file was deleted.

Original file line number Diff line number Diff line change
Expand Up @@ -36,17 +36,12 @@ def eigenvector_centrality(
G, max_iter=100, tol=1.0e-6, nstart=None, weight=None, *, dtype=None
):
"""`nstart` parameter is not used, but it is checked for validity."""
G = _to_graph(G, weight, np.float32)
G = _to_graph(G, weight, 1, np.float32)
if len(G) == 0:
raise nx.NetworkXPointlessConcept(
"cannot compute centrality for the null graph"
)
if dtype is not None:
dtype = _get_float_dtype(dtype)
elif weight in G.edge_values:
dtype = _get_float_dtype(G.edge_values[weight].dtype)
else:
dtype = np.float32
rlratzel marked this conversation as resolved.
Show resolved Hide resolved
dtype = _get_float_dtype(dtype, graph=G, weight=weight)
if nstart is not None:
# Check if given nstart is valid even though we don't use it
nstart = G._dict_to_nodearray(nstart, dtype=dtype)
Expand Down
9 changes: 2 additions & 7 deletions python/nx-cugraph/nx_cugraph/algorithms/centrality/katz.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,15 +49,10 @@ def katz_centrality(
# Redundant with the `_can_run` check below when being dispatched by NetworkX,
# but we raise here in case this funcion is called directly.
raise NotImplementedError("normalized=False is not supported.")
G = _to_graph(G, weight, np.float32)
G = _to_graph(G, weight, 1, np.float32)
if (N := len(G)) == 0:
return {}
if dtype is not None:
dtype = _get_float_dtype(dtype)
elif weight in G.edge_values:
dtype = _get_float_dtype(G.edge_values[weight].dtype)
else:
dtype = np.float32
dtype = _get_float_dtype(dtype, graph=G, weight=weight)
if nstart is not None:
# Check if given nstart is valid even though we don't use it
nstart = G._dict_to_nodearray(nstart, 0, dtype)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -46,15 +46,10 @@ def hits(
weight="weight",
dtype=None,
):
G = _to_graph(G, weight, np.float32)
G = _to_graph(G, weight, 1, np.float32)
if (N := len(G)) == 0:
return {}, {}
if dtype is not None:
dtype = _get_float_dtype(dtype)
elif weight in G.edge_values:
dtype = _get_float_dtype(G.edge_values[weight].dtype)
else:
dtype = np.float32
dtype = _get_float_dtype(dtype, graph=G, weight=weight)
if nstart is not None:
nstart = G._dict_to_nodearray(nstart, 0, dtype)
if max_iter <= 0:
Expand Down
Loading
Loading