Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Forward-merge branch-24.02 to branch-24.04 #4140

Merged
merged 1 commit into from
Feb 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
182 changes: 140 additions & 42 deletions python/nx-cugraph/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -89,48 +89,146 @@ interface to its CUDA-based graph analytics library) and
[CuPy](https://cupy.dev/) (a GPU-accelerated array library) to NetworkX's
familiar and easy-to-use API.

Below is the list of algorithms (many listed using pylibcugraph names),
available today in pylibcugraph or implemented using CuPy, that are or will be
supported in nx-cugraph.

| feature/algo | release/target version |
| ----- | ----- |
| analyze_clustering_edge_cut | ? |
| analyze_clustering_modularity | ? |
| analyze_clustering_ratio_cut | ? |
| balanced_cut_clustering | ? |
| betweenness_centrality | 23.10 |
| bfs | ? |
| connected_components | 23.12 |
| core_number | ? |
| degree_centrality | 23.12 |
| ecg | ? |
| edge_betweenness_centrality | 23.10 |
| ego_graph | ? |
| eigenvector_centrality | 23.12 |
| get_two_hop_neighbors | ? |
| hits | 23.12 |
| in_degree_centrality | 23.12 |
| induced_subgraph | ? |
| jaccard_coefficients | ? |
| katz_centrality | 23.12 |
| k_core | ? |
| k_truss_subgraph | 23.12 |
| leiden | ? |
| louvain | 23.10 |
| node2vec | ? |
| out_degree_centrality | 23.12 |
| overlap_coefficients | ? |
| pagerank | 23.12 |
| personalized_pagerank | ? |
| sorensen_coefficients | ? |
| spectral_modularity_maximization | ? |
| sssp | 23.12 |
| strongly_connected_components | ? |
| triangle_count | ? |
| uniform_neighbor_sample | ? |
| uniform_random_walks | ? |
| weakly_connected_components | ? |
Below is the list of algorithms that are currently supported in nx-cugraph.

### Algorithms

```
bipartite
├─ basic
│ └─ is_bipartite
└─ generators
└─ complete_bipartite_graph
centrality
├─ betweenness
│ ├─ betweenness_centrality
│ └─ edge_betweenness_centrality
├─ degree_alg
│ ├─ degree_centrality
│ ├─ in_degree_centrality
│ └─ out_degree_centrality
├─ eigenvector
│ └─ eigenvector_centrality
└─ katz
└─ katz_centrality
cluster
├─ average_clustering
├─ clustering
├─ transitivity
└─ triangles
community
└─ louvain
└─ louvain_communities
components
├─ connected
│ ├─ connected_components
│ ├─ is_connected
│ ├─ node_connected_component
│ └─ number_connected_components
└─ weakly_connected
├─ is_weakly_connected
├─ number_weakly_connected_components
└─ weakly_connected_components
core
├─ core_number
└─ k_truss
dag
├─ ancestors
└─ descendants
isolate
├─ is_isolate
├─ isolates
└─ number_of_isolates
link_analysis
├─ hits_alg
│ └─ hits
└─ pagerank_alg
└─ pagerank
operators
└─ unary
├─ complement
└─ reverse
reciprocity
├─ overall_reciprocity
└─ reciprocity
shortest_paths
└─ unweighted
├─ single_source_shortest_path_length
└─ single_target_shortest_path_length
traversal
└─ breadth_first_search
├─ bfs_edges
├─ bfs_layers
├─ bfs_predecessors
├─ bfs_successors
├─ bfs_tree
├─ descendants_at_distance
└─ generic_bfs_edges
tree
└─ recognition
├─ is_arborescence
├─ is_branching
├─ is_forest
└─ is_tree
```

### Generators

```
classic
├─ barbell_graph
├─ circular_ladder_graph
├─ complete_graph
├─ complete_multipartite_graph
├─ cycle_graph
├─ empty_graph
├─ ladder_graph
├─ lollipop_graph
├─ null_graph
├─ path_graph
├─ star_graph
├─ tadpole_graph
├─ trivial_graph
├─ turan_graph
└─ wheel_graph
community
└─ caveman_graph
small
├─ bull_graph
├─ chvatal_graph
├─ cubical_graph
├─ desargues_graph
├─ diamond_graph
├─ dodecahedral_graph
├─ frucht_graph
├─ heawood_graph
├─ house_graph
├─ house_x_graph
├─ icosahedral_graph
├─ krackhardt_kite_graph
├─ moebius_kantor_graph
├─ octahedral_graph
├─ pappus_graph
├─ petersen_graph
├─ sedgewick_maze_graph
├─ tetrahedral_graph
├─ truncated_cube_graph
├─ truncated_tetrahedron_graph
└─ tutte_graph
social
├─ davis_southern_women_graph
├─ florentine_families_graph
├─ karate_club_graph
└─ les_miserables_graph
```

### Other

```
convert_matrix
├─ from_pandas_edgelist
└─ from_scipy_sparse_array
```

To request nx-cugraph backend support for a NetworkX API that is not listed
above, visit the [cuGraph GitHub repo](https://github.com/rapidsai/cugraph).
4 changes: 3 additions & 1 deletion python/nx-cugraph/nx_cugraph/scripts/print_tree.py
Original file line number Diff line number Diff line change
Expand Up @@ -133,7 +133,9 @@ def main(
}
if by == "networkx_path":
G = create_tree(path_to_info, by="networkx_path", **kwargs)
text = re.sub(r"[A-Za-z_\./]+\.", "", ("\n".join(nx.generate_network_text(G))))
text = re.sub(
r" [A-Za-z_\./]+\.", " ", ("\n".join(nx.generate_network_text(G)))
)
elif by == "plc":
G = create_tree(
path_to_info, by=["plc", "networkx_path"], prefix="plc-", **kwargs
Expand Down
Loading