Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Forward-merge branch-24.02 to branch-24.04 #4101

Merged
merged 1 commit into from
Jan 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions python/nx-cugraph/_nx_cugraph/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@
"functions": {
# BEGIN: functions
"ancestors",
"average_clustering",
"barbell_graph",
"betweenness_centrality",
"bfs_edges",
Expand All @@ -41,6 +42,7 @@
"caveman_graph",
"chvatal_graph",
"circular_ladder_graph",
"clustering",
"complete_bipartite_graph",
"complete_graph",
"complete_multipartite_graph",
Expand Down Expand Up @@ -68,6 +70,7 @@
"house_x_graph",
"icosahedral_graph",
"in_degree_centrality",
"is_bipartite",
"is_connected",
"is_isolate",
"is_strongly_connected",
Expand Down Expand Up @@ -104,6 +107,8 @@
"strongly_connected_components",
"tadpole_graph",
"tetrahedral_graph",
"transitivity",
"triangles",
"trivial_graph",
"truncated_cube_graph",
"truncated_tetrahedron_graph",
Expand All @@ -115,11 +120,13 @@
},
"extra_docstrings": {
# BEGIN: extra_docstrings
"average_clustering": "Directed graphs and `weight` parameter are not yet supported.",
"betweenness_centrality": "`weight` parameter is not yet supported, and RNG with seed may be different.",
"bfs_edges": "`sort_neighbors` parameter is not yet supported.",
"bfs_predecessors": "`sort_neighbors` parameter is not yet supported.",
"bfs_successors": "`sort_neighbors` parameter is not yet supported.",
"bfs_tree": "`sort_neighbors` parameter is not yet supported.",
"clustering": "Directed graphs and `weight` parameter are not yet supported.",
"edge_betweenness_centrality": "`weight` parameter is not yet supported, and RNG with seed may be different.",
"eigenvector_centrality": "`nstart` parameter is not used, but it is checked for validity.",
"from_pandas_edgelist": "cudf.DataFrame inputs also supported; value columns with str is unsuppported.",
Expand All @@ -131,6 +138,7 @@
"katz_centrality": "`nstart` isn't used (but is checked), and `normalized=False` is not supported.",
"louvain_communities": "`seed` parameter is currently ignored, and self-loops are not yet supported.",
"pagerank": "`dangling` parameter is not supported, but it is checked for validity.",
"transitivity": "Directed graphs are not yet supported.",
# END: extra_docstrings
},
"extra_parameters": {
Expand Down
4 changes: 3 additions & 1 deletion python/nx-cugraph/nx_cugraph/algorithms/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,14 +13,16 @@
from . import (
bipartite,
centrality,
cluster,
community,
components,
link_analysis,
shortest_paths,
traversal,
)
from .bipartite import complete_bipartite_graph
from .bipartite import complete_bipartite_graph, is_bipartite
from .centrality import *
from .cluster import *
from .components import *
from .core import *
from .dag import *
Expand Down
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2023, NVIDIA CORPORATION.
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Expand All @@ -10,4 +10,5 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .basic import *
from .generators import *
31 changes: 31 additions & 0 deletions python/nx-cugraph/nx_cugraph/algorithms/bipartite/basic.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
# Copyright (c) 2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cupy as cp

from nx_cugraph.algorithms.cluster import _triangles
from nx_cugraph.convert import _to_graph
from nx_cugraph.utils import networkx_algorithm

__all__ = [
"is_bipartite",
]


@networkx_algorithm(plc="triangle_count", version_added="24.02")
def is_bipartite(G):
G = _to_graph(G)
# Counting triangles may not be the fastest way to do this, but it is simple.
node_ids, triangles, is_single_node = _triangles(
G, None, symmetrize="union" if G.is_directed() else None
)
return int(cp.count_nonzero(triangles)) == 0
136 changes: 136 additions & 0 deletions python/nx-cugraph/nx_cugraph/algorithms/cluster.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@
# Copyright (c) 2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cupy as cp
import pylibcugraph as plc

from nx_cugraph.convert import _to_undirected_graph
from nx_cugraph.utils import networkx_algorithm, not_implemented_for

__all__ = [
"triangles",
"average_clustering",
"clustering",
"transitivity",
]


def _triangles(G, nodes, symmetrize=None):
if nodes is not None:
if is_single_node := (nodes in G):
nodes = [nodes if G.key_to_id is None else G.key_to_id[nodes]]
else:
nodes = list(nodes)
nodes = G._list_to_nodearray(nodes)
else:
is_single_node = False
if len(G) == 0:
return None, None, is_single_node
node_ids, triangles = plc.triangle_count(
resource_handle=plc.ResourceHandle(),
graph=G._get_plc_graph(symmetrize=symmetrize),
start_list=nodes,
do_expensive_check=False,
)
return node_ids, triangles, is_single_node


@not_implemented_for("directed")
@networkx_algorithm(plc="triangle_count", version_added="24.02")
def triangles(G, nodes=None):
G = _to_undirected_graph(G)
node_ids, triangles, is_single_node = _triangles(G, nodes)
if len(G) == 0:
return {}
if is_single_node:
return int(triangles[0])
return G._nodearrays_to_dict(node_ids, triangles)


@not_implemented_for("directed")
@networkx_algorithm(is_incomplete=True, plc="triangle_count", version_added="24.02")
def clustering(G, nodes=None, weight=None):
"""Directed graphs and `weight` parameter are not yet supported."""
G = _to_undirected_graph(G)
node_ids, triangles, is_single_node = _triangles(G, nodes)
if len(G) == 0:
return {}
if is_single_node:
numer = int(triangles[0])
if numer == 0:
return 0
degree = int((G.src_indices == nodes).sum())
return 2 * numer / (degree * (degree - 1))
degrees = G._degrees_array(ignore_selfloops=True)[node_ids]
denom = degrees * (degrees - 1)
results = 2 * triangles / denom
results = cp.where(denom, results, 0) # 0 where we divided by 0
return G._nodearrays_to_dict(node_ids, results)


@clustering._can_run
def _(G, nodes=None, weight=None):
return weight is None and not G.is_directed()


@not_implemented_for("directed")
@networkx_algorithm(is_incomplete=True, plc="triangle_count", version_added="24.02")
def average_clustering(G, nodes=None, weight=None, count_zeros=True):
"""Directed graphs and `weight` parameter are not yet supported."""
G = _to_undirected_graph(G)
node_ids, triangles, is_single_node = _triangles(G, nodes)
if len(G) == 0:
raise ZeroDivisionError
degrees = G._degrees_array(ignore_selfloops=True)[node_ids]
if not count_zeros:
mask = triangles != 0
triangles = triangles[mask]
if triangles.size == 0:
raise ZeroDivisionError
degrees = degrees[mask]
denom = degrees * (degrees - 1)
results = 2 * triangles / denom
if count_zeros:
results = cp.where(denom, results, 0) # 0 where we divided by 0
return float(results.mean())


@average_clustering._can_run
def _(G, nodes=None, weight=None, count_zeros=True):
return weight is None and not G.is_directed()


@not_implemented_for("directed")
@networkx_algorithm(is_incomplete=True, plc="triangle_count", version_added="24.02")
def transitivity(G):
"""Directed graphs are not yet supported."""
G = _to_undirected_graph(G)
if len(G) == 0:
return 0
node_ids, triangles = plc.triangle_count(
resource_handle=plc.ResourceHandle(),
graph=G._get_plc_graph(),
start_list=None,
do_expensive_check=False,
)
numer = int(triangles.sum())
if numer == 0:
return 0
degrees = G._degrees_array(ignore_selfloops=True)[node_ids]
denom = int((degrees * (degrees - 1)).sum())
return 2 * numer / denom


@transitivity._can_run
def _(G):
# Is transitivity supposed to work on directed graphs?
return not G.is_directed()
18 changes: 13 additions & 5 deletions python/nx-cugraph/nx_cugraph/classes/digraph.py
Original file line number Diff line number Diff line change
Expand Up @@ -177,8 +177,16 @@ def to_undirected(self, reciprocal=False, as_view=False):
# Private methods #
###################

def _in_degrees_array(self):
return cp.bincount(self.dst_indices, minlength=self._N)

def _out_degrees_array(self):
return cp.bincount(self.src_indices, minlength=self._N)
def _in_degrees_array(self, *, ignore_selfloops=False):
dst_indices = self.dst_indices
if ignore_selfloops:
not_selfloops = self.src_indices != dst_indices
dst_indices = dst_indices[not_selfloops]
return cp.bincount(dst_indices, minlength=self._N)

def _out_degrees_array(self, *, ignore_selfloops=False):
src_indices = self.src_indices
if ignore_selfloops:
not_selfloops = src_indices != self.dst_indices
src_indices = src_indices[not_selfloops]
return cp.bincount(src_indices, minlength=self._N)
13 changes: 10 additions & 3 deletions python/nx-cugraph/nx_cugraph/classes/graph.py
Original file line number Diff line number Diff line change
Expand Up @@ -732,10 +732,17 @@ def _become(self, other: Graph):
self.graph = graph
return self

def _degrees_array(self):
degrees = cp.bincount(self.src_indices, minlength=self._N)
def _degrees_array(self, *, ignore_selfloops=False):
src_indices = self.src_indices
dst_indices = self.dst_indices
if ignore_selfloops:
not_selfloops = src_indices != dst_indices
src_indices = src_indices[not_selfloops]
if self.is_directed():
dst_indices = dst_indices[not_selfloops]
degrees = cp.bincount(src_indices, minlength=self._N)
if self.is_directed():
degrees += cp.bincount(self.dst_indices, minlength=self._N)
degrees += cp.bincount(dst_indices, minlength=self._N)
return degrees

_in_degrees_array = _degrees_array
Expand Down
48 changes: 48 additions & 0 deletions python/nx-cugraph/nx_cugraph/tests/test_cluster.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
# Copyright (c) 2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import networkx as nx
import pytest
from packaging.version import parse

nxver = parse(nx.__version__)

if nxver.major == 3 and nxver.minor < 2:
pytest.skip("Need NetworkX >=3.2 to test clustering", allow_module_level=True)


def test_selfloops():
G = nx.complete_graph(5)
H = nx.complete_graph(5)
H.add_edge(0, 0)
H.add_edge(1, 1)
H.add_edge(2, 2)
# triangles
expected = nx.triangles(G)
assert expected == nx.triangles(H)
assert expected == nx.triangles(G, backend="cugraph")
assert expected == nx.triangles(H, backend="cugraph")
# average_clustering
expected = nx.average_clustering(G)
assert expected == nx.average_clustering(H)
assert expected == nx.average_clustering(G, backend="cugraph")
assert expected == nx.average_clustering(H, backend="cugraph")
# clustering
expected = nx.clustering(G)
assert expected == nx.clustering(H)
assert expected == nx.clustering(G, backend="cugraph")
assert expected == nx.clustering(H, backend="cugraph")
# transitivity
expected = nx.transitivity(G)
assert expected == nx.transitivity(H)
assert expected == nx.transitivity(G, backend="cugraph")
assert expected == nx.transitivity(H, backend="cugraph")
Loading