Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

nx-cugraph: indicate which plc algorithms are used and version_added #4069

Merged
merged 13 commits into from
Jan 11, 2024
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2023, NVIDIA CORPORATION.
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Expand All @@ -24,7 +24,7 @@
]


@networkx_algorithm(nodes_or_number=[0, 1])
@networkx_algorithm(nodes_or_number=[0, 1], version_added="23.12")
def complete_bipartite_graph(n1, n2, create_using=None):
graph_class, inplace = _create_using_class(create_using)
if graph_class.is_directed():
Expand Down
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2023, NVIDIA CORPORATION.
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Expand All @@ -18,7 +18,12 @@
__all__ = ["betweenness_centrality", "edge_betweenness_centrality"]


@networkx_algorithm
@networkx_algorithm(
is_incomplete=True, # weight not supported
is_different=True, # RNG with seed is different
plc="betweenness_centrality",
version_added="23.10",
rlratzel marked this conversation as resolved.
Show resolved Hide resolved
)
def betweenness_centrality(
G, k=None, normalized=True, weight=None, endpoints=False, seed=None
):
Expand Down Expand Up @@ -46,7 +51,12 @@ def _(G, k=None, normalized=True, weight=None, endpoints=False, seed=None):
return weight is None


@networkx_algorithm
@networkx_algorithm(
is_incomplete=True, # weight not supported
is_different=True, # RNG with seed is different
plc="edge_betweenness_centrality",
version_added="23.10",
)
def edge_betweenness_centrality(G, k=None, normalized=True, weight=None, seed=None):
"""`weight` parameter is not yet supported."""
if weight is not None:
Expand Down
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2023, NVIDIA CORPORATION.
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Expand All @@ -16,7 +16,7 @@
__all__ = ["degree_centrality", "in_degree_centrality", "out_degree_centrality"]


@networkx_algorithm
@networkx_algorithm(version_added="23.12")
def degree_centrality(G):
G = _to_graph(G)
if len(G) <= 1:
Expand All @@ -27,7 +27,7 @@ def degree_centrality(G):


@not_implemented_for("undirected")
@networkx_algorithm
@networkx_algorithm(version_added="23.12")
def in_degree_centrality(G):
G = _to_directed_graph(G)
if len(G) <= 1:
Expand All @@ -38,7 +38,7 @@ def in_degree_centrality(G):


@not_implemented_for("undirected")
@networkx_algorithm
@networkx_algorithm(version_added="23.12")
def out_degree_centrality(G):
G = _to_directed_graph(G)
if len(G) <= 1:
Expand Down
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2023, NVIDIA CORPORATION.
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Expand Down Expand Up @@ -26,7 +26,12 @@


@not_implemented_for("multigraph")
@networkx_algorithm(extra_params=_dtype_param)
@networkx_algorithm(
is_incomplete=True, # nstart not supported
extra_params=_dtype_param,
plc="eigenvector_centrality",
version_added="23.12",
)
def eigenvector_centrality(
G, max_iter=100, tol=1.0e-6, nstart=None, weight=None, *, dtype=None
):
Expand Down
9 changes: 7 additions & 2 deletions python/nx-cugraph/nx_cugraph/algorithms/centrality/katz.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2023, NVIDIA CORPORATION.
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Expand Down Expand Up @@ -26,7 +26,12 @@


@not_implemented_for("multigraph")
@networkx_algorithm(extra_params=_dtype_param)
@networkx_algorithm(
is_incomplete=True, # nstart and normalized=False not supported
extra_params=_dtype_param,
plc="katz_centrality",
version_added="23.12",
)
def katz_centrality(
G,
alpha=0.1,
Expand Down
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2023, NVIDIA CORPORATION.
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Expand Down Expand Up @@ -30,12 +30,16 @@

@not_implemented_for("directed")
@networkx_algorithm(
is_incomplete=True, # seed not supported; self-loops not supported
is_different=True, # RNG different
extra_params={
"max_level : int, optional": (
"Upper limit of the number of macro-iterations (max: 500)."
),
**_dtype_param,
}
},
plc="louvain",
version_added="23.10",
)
def louvain_communities(
G,
Expand Down
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2023, NVIDIA CORPORATION.
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Expand Down Expand Up @@ -30,7 +30,7 @@


@not_implemented_for("directed")
@networkx_algorithm
@networkx_algorithm(plc="weakly_connected_components", version_added="23.12")
def number_connected_components(G):
return sum(1 for _ in connected_components(G))
# PREFERRED IMPLEMENTATION, BUT PLC DOES NOT HANDLE ISOLATED VERTICES WELL
Expand All @@ -57,7 +57,7 @@ def _(G):


@not_implemented_for("directed")
@networkx_algorithm
@networkx_algorithm(plc="weakly_connected_components", version_added="23.12")
def connected_components(G):
G = _to_undirected_graph(G)
if G.src_indices.size == 0:
Expand Down Expand Up @@ -86,7 +86,7 @@ def connected_components(G):


@not_implemented_for("directed")
@networkx_algorithm
@networkx_algorithm(plc="weakly_connected_components", version_added="23.12")
def is_connected(G):
G = _to_undirected_graph(G)
if len(G) == 0:
Expand All @@ -110,7 +110,7 @@ def is_connected(G):


@not_implemented_for("directed")
@networkx_algorithm
@networkx_algorithm(plc="weakly_connected_components", version_added="23.12")
def node_connected_component(G, n):
# We could also do plain BFS from n
G = _to_undirected_graph(G)
Expand Down
4 changes: 2 additions & 2 deletions python/nx-cugraph/nx_cugraph/algorithms/core.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2023, NVIDIA CORPORATION.
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Expand Down Expand Up @@ -27,7 +27,7 @@

@not_implemented_for("directed")
@not_implemented_for("multigraph")
@networkx_algorithm
@networkx_algorithm(is_incomplete=True, plc="k_truss_subgraph", version_added="23.12")
def k_truss(G, k):
"""
Currently raises `NotImplementedError` for graphs with more than one connected
Expand Down
6 changes: 3 additions & 3 deletions python/nx-cugraph/nx_cugraph/algorithms/dag.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2023, NVIDIA CORPORATION.
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Expand Down Expand Up @@ -45,11 +45,11 @@ def _ancestors_and_descendants(G, source, *, is_ancestors):
return G._nodearray_to_set(node_ids[mask])


@networkx_algorithm
@networkx_algorithm(plc="bfs", version_added="24.02")
def descendants(G, source):
return _ancestors_and_descendants(G, source, is_ancestors=False)


@networkx_algorithm
@networkx_algorithm(plc="bfs", version_added="24.02")
def ancestors(G, source):
return _ancestors_and_descendants(G, source, is_ancestors=True)
8 changes: 4 additions & 4 deletions python/nx-cugraph/nx_cugraph/algorithms/isolate.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2023, NVIDIA CORPORATION.
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Expand All @@ -25,7 +25,7 @@
__all__ = ["is_isolate", "isolates", "number_of_isolates"]


@networkx_algorithm
@networkx_algorithm(version_added="23.10")
def is_isolate(G, n):
G = _to_graph(G)
index = n if G.key_to_id is None else G.key_to_id[n]
Expand All @@ -51,13 +51,13 @@ def _isolates(G) -> cp.ndarray[IndexValue]:
return cp.nonzero(_mark_isolates(G))[0]


@networkx_algorithm
@networkx_algorithm(version_added="23.10")
def isolates(G):
G = _to_graph(G)
return G._nodeiter_to_iter(iter(_isolates(G).tolist()))


@networkx_algorithm
@networkx_algorithm(version_added="23.10")
def number_of_isolates(G):
G = _to_graph(G)
return _mark_isolates(G).sum().tolist()
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2023, NVIDIA CORPORATION.
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Expand Down Expand Up @@ -32,7 +32,9 @@
"The edge attribute to use as the edge weight."
),
**_dtype_param,
}
},
plc="hits",
version_added="23.12",
)
def hits(
G,
Expand Down
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2023, NVIDIA CORPORATION.
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Expand Down Expand Up @@ -26,7 +26,12 @@
__all__ = ["pagerank"]


@networkx_algorithm(extra_params=_dtype_param)
@networkx_algorithm(
is_incomplete=True, # dangling not supported
extra_params=_dtype_param,
plc={"pagerank", "personalized_pagerank"},
version_added="23.12",
)
def pagerank(
G,
alpha=0.85,
Expand Down Expand Up @@ -97,7 +102,7 @@ def pagerank(


@pagerank._can_run
def pagerank(
def _(
G,
alpha=0.85,
personalization=None,
Expand Down
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2023, NVIDIA CORPORATION.
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Expand All @@ -21,12 +21,12 @@
__all__ = ["single_source_shortest_path_length", "single_target_shortest_path_length"]


@networkx_algorithm
@networkx_algorithm(plc="bfs", version_added="23.12")
def single_source_shortest_path_length(G, source, cutoff=None):
return _single_shortest_path_length(G, source, cutoff, "Source")


@networkx_algorithm
@networkx_algorithm(plc="bfs", version_added="23.12")
def single_target_shortest_path_length(G, target, cutoff=None):
return _single_shortest_path_length(G, target, cutoff, "Target")

Expand Down
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2023, NVIDIA CORPORATION.
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Expand Down Expand Up @@ -57,7 +57,7 @@ def _bfs(G, source, *, depth_limit=None, reverse=False):
return distances[mask], predecessors[mask], node_ids[mask]


@networkx_algorithm
@networkx_algorithm(is_incomplete=True, plc="bfs", version_added="24.02")
def generic_bfs_edges(G, source, neighbors=None, depth_limit=None, sort_neighbors=None):
"""`neighbors` and `sort_neighbors` parameters are not yet supported."""
return bfs_edges(source, depth_limit=depth_limit)
Expand All @@ -68,7 +68,7 @@ def _(G, source, neighbors=None, depth_limit=None, sort_neighbors=None):
return neighbors is None and sort_neighbors is None


@networkx_algorithm
@networkx_algorithm(is_incomplete=True, plc="bfs", version_added="24.02")
def bfs_edges(G, source, reverse=False, depth_limit=None, sort_neighbors=None):
"""`sort_neighbors` parameter is not yet supported."""
G = _check_G_and_source(G, source)
Expand All @@ -95,7 +95,7 @@ def _(G, source, reverse=False, depth_limit=None, sort_neighbors=None):
return sort_neighbors is None


@networkx_algorithm
@networkx_algorithm(is_incomplete=True, plc="bfs", version_added="24.02")
def bfs_tree(G, source, reverse=False, depth_limit=None, sort_neighbors=None):
"""`sort_neighbors` parameter is not yet supported."""
G = _check_G_and_source(G, source)
Expand Down Expand Up @@ -149,7 +149,7 @@ def _(G, source, reverse=False, depth_limit=None, sort_neighbors=None):
return sort_neighbors is None


@networkx_algorithm
@networkx_algorithm(is_incomplete=True, plc="bfs", version_added="24.02")
def bfs_successors(G, source, depth_limit=None, sort_neighbors=None):
"""`sort_neighbors` parameter is not yet supported."""
G = _check_G_and_source(G, source)
Expand All @@ -173,7 +173,7 @@ def _(G, source, depth_limit=None, sort_neighbors=None):
return sort_neighbors is None


@networkx_algorithm
@networkx_algorithm(plc="bfs", version_added="24.02")
def bfs_layers(G, sources):
G = _to_graph(G)
if sources in G:
Expand Down Expand Up @@ -201,7 +201,7 @@ def bfs_layers(G, sources):
return (G._nodearray_to_list(groups[key]) for key in range(len(groups)))


@networkx_algorithm
@networkx_algorithm(is_incomplete=True, plc="bfs", version_added="24.02")
def bfs_predecessors(G, source, depth_limit=None, sort_neighbors=None):
"""`sort_neighbors` parameter is not yet supported."""
G = _check_G_and_source(G, source)
Expand All @@ -227,7 +227,7 @@ def _(G, source, depth_limit=None, sort_neighbors=None):
return sort_neighbors is None


@networkx_algorithm
@networkx_algorithm(plc="bfs", version_added="24.02")
def descendants_at_distance(G, source, distance):
G = _check_G_and_source(G, source)
if distance is None or distance < 0:
Expand Down
Loading