Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Forward-merge branch-23.10 to branch-23.12 #3871

Merged
merged 1 commit into from
Sep 22, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions python/cugraph-dgl/tests/nn/test_gatconv.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@ def test_gatconv_equality(
):
from dgl.nn.pytorch import GATConv

torch.manual_seed(12345)
g = create_graph1().to("cuda")

if idtype_int:
Expand Down Expand Up @@ -121,6 +122,7 @@ def test_gatconv_equality(
def test_gatconv_edge_feats(
bias, bipartite, concat, max_in_degree, num_heads, to_block, use_edge_feats
):
torch.manual_seed(12345)
g = create_graph1().to("cuda")

if to_block:
Expand Down
2 changes: 2 additions & 0 deletions python/cugraph-dgl/tests/nn/test_gatv2conv.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@ def test_gatv2conv_equality(
):
from dgl.nn.pytorch import GATv2Conv

torch.manual_seed(12345)
g = create_graph1().to("cuda")

if idtype_int:
Expand Down Expand Up @@ -109,6 +110,7 @@ def test_gatv2conv_equality(
def test_gatv2conv_edge_feats(
bias, bipartite, concat, max_in_degree, num_heads, to_block, use_edge_feats
):
torch.manual_seed(12345)
g = create_graph1().to("cuda")

if to_block:
Expand Down
15 changes: 11 additions & 4 deletions python/cugraph-dgl/tests/nn/test_relgraphconv.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@ def test_relgraphconv_equality(
):
from dgl.nn.pytorch import RelGraphConv

torch.manual_seed(12345)
in_feat, out_feat, num_rels = 10, 2, 3
args = (in_feat, out_feat, num_rels)
kwargs = {
Expand Down Expand Up @@ -75,12 +76,18 @@ def test_relgraphconv_equality(
size=size, src_ids=indices, cdst_ids=offsets, values=etypes, formats="csc"
)

torch.manual_seed(0)
conv1 = RelGraphConv(*args, **kwargs).cuda()
conv2 = CuGraphRelGraphConv(*args, **kwargs, apply_norm=False).cuda()

torch.manual_seed(0)
kwargs["apply_norm"] = False
conv2 = CuGraphRelGraphConv(*args, **kwargs).cuda()
with torch.no_grad():
if self_loop:
conv2.W.data[:-1] = conv1.linear_r.W.data
conv2.W.data[-1] = conv1.loop_weight.data
else:
conv2.W.data = conv1.linear_r.W.data.detach().clone()

if regularizer is not None:
conv2.coeff.data = conv1.linear_r.coeff.data.detach().clone()

out1 = conv1(g, feat, g.edata[dgl.ETYPE])

Expand Down
1 change: 1 addition & 0 deletions python/cugraph-dgl/tests/nn/test_sageconv.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@ def test_sageconv_equality(
):
from dgl.nn.pytorch import SAGEConv

torch.manual_seed(12345)
kwargs = {"aggregator_type": aggr, "bias": bias}
g = create_graph1().to("cuda")

Expand Down
1 change: 1 addition & 0 deletions python/cugraph-dgl/tests/nn/test_transformerconv.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@ def test_transformerconv(
use_edge_feats,
sparse_format,
):
torch.manual_seed(12345)
device = "cuda"
g = create_graph1().to(device)

Expand Down
1 change: 1 addition & 0 deletions python/cugraph-pyg/cugraph_pyg/tests/nn/test_gat_conv.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@ def test_gat_conv_equality(
import torch
from torch_geometric.nn import GATConv

torch.manual_seed(12345)
edge_index, size = request.getfixturevalue(graph)
edge_index = edge_index.cuda()

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@ def test_gatv2_conv_equality(bipartite, concat, heads, use_edge_attr, graph, req
import torch
from torch_geometric.nn import GATv2Conv

torch.manual_seed(12345)
edge_index, size = request.getfixturevalue(graph)
edge_index = edge_index.cuda()

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ def test_rgcn_conv_equality(
import torch
from torch_geometric.nn import FastRGCNConv as RGCNConv

torch.manual_seed(12345)
in_channels, out_channels, num_relations = (4, 2, 3)
kwargs = dict(aggr=aggr, bias=bias, num_bases=num_bases, root_weight=root_weight)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@ def test_sage_conv_equality(
import torch
from torch_geometric.nn import SAGEConv

torch.manual_seed(12345)
edge_index, size = request.getfixturevalue(graph)
edge_index = edge_index.cuda()
csc = CuGraphSAGEConv.to_csc(edge_index, size)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@ def test_transformer_conv_equality(bipartite, concat, heads, graph, request):
import torch
from torch_geometric.nn import TransformerConv

torch.manual_seed(12345)
edge_index, size = request.getfixturevalue(graph)
edge_index = edge_index.cuda()
csc = CuGraphTransformerConv.to_csc(edge_index, size)
Expand Down