Skip to content

Commit

Permalink
Merge branch 'branch-24.04' of github.com:rapidsai/cugraph into test-…
Browse files Browse the repository at this point in the history
…cuda-12.2
  • Loading branch information
jameslamb committed Jan 22, 2024
2 parents 602e028 + 672a037 commit c5720cf
Show file tree
Hide file tree
Showing 8 changed files with 107 additions and 8 deletions.
4 changes: 4 additions & 0 deletions python/nx-cugraph/_nx_cugraph/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,10 +71,14 @@
"house_x_graph",
"icosahedral_graph",
"in_degree_centrality",
"is_arborescence",
"is_bipartite",
"is_branching",
"is_connected",
"is_forest",
"is_isolate",
"is_strongly_connected",
"is_tree",
"is_weakly_connected",
"isolates",
"k_truss",
Expand Down
2 changes: 2 additions & 0 deletions python/nx-cugraph/nx_cugraph/algorithms/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
link_analysis,
shortest_paths,
traversal,
tree,
)
from .bipartite import complete_bipartite_graph, is_bipartite
from .centrality import *
Expand All @@ -31,3 +32,4 @@
from .reciprocity import *
from .shortest_paths import *
from .traversal import *
from .tree.recognition import *
2 changes: 1 addition & 1 deletion python/nx-cugraph/nx_cugraph/algorithms/isolate.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,4 +70,4 @@ def isolates(G):
@networkx_algorithm(version_added="23.10")
def number_of_isolates(G):
G = _to_graph(G)
return _mark_isolates(G).sum().tolist()
return int(cp.count_nonzero(_mark_isolates(G)))
13 changes: 13 additions & 0 deletions python/nx-cugraph/nx_cugraph/algorithms/tree/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# Copyright (c) 2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .recognition import *
74 changes: 74 additions & 0 deletions python/nx-cugraph/nx_cugraph/algorithms/tree/recognition.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
# Copyright (c) 2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cupy as cp
import networkx as nx

import nx_cugraph as nxcg
from nx_cugraph.convert import _to_directed_graph, _to_graph
from nx_cugraph.utils import networkx_algorithm, not_implemented_for

__all__ = ["is_arborescence", "is_branching", "is_forest", "is_tree"]


@not_implemented_for("undirected")
@networkx_algorithm(plc="weakly_connected_components", version_added="24.02")
def is_arborescence(G):
G = _to_directed_graph(G)
return is_tree(G) and int(G._in_degrees_array().max()) <= 1


@not_implemented_for("undirected")
@networkx_algorithm(plc="weakly_connected_components", version_added="24.02")
def is_branching(G):
G = _to_directed_graph(G)
return is_forest(G) and int(G._in_degrees_array().max()) <= 1


@networkx_algorithm(plc="weakly_connected_components", version_added="24.02")
def is_forest(G):
G = _to_graph(G)
if len(G) == 0:
raise nx.NetworkXPointlessConcept("G has no nodes.")
if is_directed := G.is_directed():
connected_components = nxcg.weakly_connected_components
else:
connected_components = nxcg.connected_components
for components in connected_components(G):
node_ids = G._list_to_nodearray(list(components))
# TODO: create utilities for creating subgraphs
mask = cp.isin(G.src_indices, node_ids) & cp.isin(G.dst_indices, node_ids)
# A tree must have an edge count equal to the number of nodes minus the
# tree's root node.
if is_directed:
if int(cp.count_nonzero(mask)) != len(components) - 1:
return False
else:
src_indices = G.src_indices[mask]
dst_indices = G.dst_indices[mask]
if int(cp.count_nonzero(src_indices <= dst_indices)) != len(components) - 1:
return False
return True


@networkx_algorithm(plc="weakly_connected_components", version_added="24.02")
def is_tree(G):
G = _to_graph(G)
if len(G) == 0:
raise nx.NetworkXPointlessConcept("G has no nodes.")
if G.is_directed():
is_connected = nxcg.is_weakly_connected
else:
is_connected = nxcg.is_connected
# A tree must have an edge count equal to the number of nodes minus the
# tree's root node.
return len(G) - 1 == G.number_of_edges() and is_connected(G)
12 changes: 7 additions & 5 deletions python/nx-cugraph/nx_cugraph/classes/digraph.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@
from .graph import Graph

if TYPE_CHECKING: # pragma: no cover
from nx_cugraph.typing import NodeKey
from nx_cugraph.typing import AttrKey

__all__ = ["DiGraph"]

Expand All @@ -47,10 +47,8 @@ def to_networkx_class(cls) -> type[nx.DiGraph]:
return nx.DiGraph

@networkx_api
def number_of_edges(
self, u: NodeKey | None = None, v: NodeKey | None = None
) -> int:
if u is not None or v is not None:
def size(self, weight: AttrKey | None = None) -> int:
if weight is not None:
raise NotImplementedError
return self.src_indices.size

Expand Down Expand Up @@ -182,11 +180,15 @@ def _in_degrees_array(self, *, ignore_selfloops=False):
if ignore_selfloops:
not_selfloops = self.src_indices != dst_indices
dst_indices = dst_indices[not_selfloops]
if dst_indices.size == 0:
return cp.zeros(self._N, dtype=np.int64)
return cp.bincount(dst_indices, minlength=self._N)

def _out_degrees_array(self, *, ignore_selfloops=False):
src_indices = self.src_indices
if ignore_selfloops:
not_selfloops = src_indices != self.dst_indices
src_indices = src_indices[not_selfloops]
if src_indices.size == 0:
return cp.zeros(self._N, dtype=np.int64)
return cp.bincount(src_indices, minlength=self._N)
4 changes: 3 additions & 1 deletion python/nx-cugraph/nx_cugraph/classes/function.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,8 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cupy as cp

from nx_cugraph.convert import _to_graph
from nx_cugraph.utils import networkx_algorithm

Expand All @@ -20,4 +22,4 @@
def number_of_selfloops(G):
G = _to_graph(G)
is_selfloop = G.src_indices == G.dst_indices
return is_selfloop.sum().tolist()
return int(cp.count_nonzero(is_selfloop))
4 changes: 3 additions & 1 deletion python/nx-cugraph/nx_cugraph/classes/graph.py
Original file line number Diff line number Diff line change
Expand Up @@ -522,7 +522,7 @@ def size(self, weight: AttrKey | None = None) -> int:
if weight is not None:
raise NotImplementedError
# If no self-edges, then `self.src_indices.size // 2`
return int((self.src_indices <= self.dst_indices).sum())
return int(cp.count_nonzero(self.src_indices <= self.dst_indices))

@networkx_api
def to_directed(self, as_view: bool = False) -> nxcg.DiGraph:
Expand Down Expand Up @@ -740,6 +740,8 @@ def _degrees_array(self, *, ignore_selfloops=False):
src_indices = src_indices[not_selfloops]
if self.is_directed():
dst_indices = dst_indices[not_selfloops]
if src_indices.size == 0:
return cp.zeros(self._N, dtype=np.int64)
degrees = cp.bincount(src_indices, minlength=self._N)
if self.is_directed():
degrees += cp.bincount(dst_indices, minlength=self._N)
Expand Down

0 comments on commit c5720cf

Please sign in to comment.