-
Notifications
You must be signed in to change notification settings - Fork 309
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
204 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
202 changes: 202 additions & 0 deletions
202
python/cugraph-pyg/cugraph_pyg/nn/conv/hetero_gat_conv.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,202 @@ | ||
# Copyright (c) 2023, NVIDIA CORPORATION. | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from typing import Optional | ||
from collections import defaultdict | ||
|
||
from cugraph.utilities.utils import import_optional | ||
from pylibcugraphops.pytorch.operators import mha_gat_n2n | ||
|
||
from .base import BaseConv | ||
|
||
torch = import_optional("torch") | ||
nn = import_optional("torch.nn") | ||
torch_geometric = import_optional("torch_geometric") | ||
|
||
|
||
class HeteroGATConv(BaseConv): | ||
r"""Heterogeneous graph.""" | ||
|
||
def __init__( | ||
self, | ||
in_channels: int, | ||
out_channels: int, | ||
node_types: list[str], | ||
edge_types: list[tuple[str, str, str]], | ||
heads: int = 1, | ||
concat: bool = True, | ||
negative_slope: float = 0.2, | ||
bias: bool = True, | ||
aggr: str = "sum", | ||
): | ||
super().__init__() | ||
|
||
self.node_types = node_types | ||
self.edge_types = edge_types | ||
|
||
self.num_heads = heads | ||
self.concat_heads = concat | ||
self.in_channels = in_channels | ||
self.out_channels = out_channels | ||
self.negative_slope = negative_slope | ||
self.aggr = aggr | ||
|
||
edge_types_str = ["__".join(etype) for etype in self.edge_types] | ||
|
||
self.relations_per_ntype = defaultdict(lambda: ([], [])) | ||
|
||
lin_weights = dict.fromkeys(self.node_types) | ||
|
||
attn_weights = dict.fromkeys(edge_types_str) | ||
|
||
biases = dict.fromkeys(edge_types_str) | ||
|
||
for edge_type in self.edge_types: | ||
src_type, _, dst_type = edge_type | ||
etype_str = "__".join(edge_type) | ||
self.relations_per_ntype[src_type][0].append(etype_str) | ||
if src_type != dst_type: | ||
self.relations_per_ntype[dst_type][1].append(etype_str) | ||
|
||
attn_weights[etype_str] = torch.empty( | ||
2 * self.num_heads * self.out_channels | ||
) | ||
|
||
if bias and concat: | ||
biases[etype_str] = torch.empty(self.num_heads * out_channels) | ||
elif bias: | ||
biases[etype_str] = torch.empty(out_channels) | ||
else: | ||
biases[etype_str] = None | ||
|
||
for ntype in self.node_types: | ||
n_src_rel = len(self.relations_per_ntype[ntype][0]) | ||
n_dst_rel = len(self.relations_per_ntype[ntype][1]) | ||
n_rel = n_src_rel + n_dst_rel | ||
|
||
lin_weights[ntype] = torch.empty( | ||
(n_rel * self.num_heads * self.out_channels, self.in_channels) | ||
) | ||
|
||
self.lin_weights = nn.ParameterDict(lin_weights) | ||
self.attn_weights = nn.ParameterDict(attn_weights) | ||
|
||
if bias: | ||
self.bias = nn.ParameterDict(biases) | ||
else: | ||
self.register_parameter("bias", None) | ||
|
||
self.reset_parameters() | ||
|
||
def split_tensors(self, x_dict: torch.Tensor, dim: int): | ||
x_src_dict = {"__".join(etype): None for etype in self.edge_types} | ||
x_dst_dict = {"__".join(etype): None for etype in self.edge_types} | ||
|
||
for ntype, t in x_dict.items(): | ||
n_src_rel = len(self.relations_per_ntype[ntype][0]) | ||
n_dst_rel = len(self.relations_per_ntype[ntype][1]) | ||
n_rel = n_src_rel + n_dst_rel | ||
t_list = torch.chunk(t, chunks=n_rel, dim=dim) | ||
|
||
for i, src_rel in enumerate(self.relations_per_ntype[ntype][0]): | ||
x_src_dict[src_rel] = t_list[i] | ||
|
||
for i, dst_rel in enumerate(self.relations_per_ntype[ntype][1]): | ||
src_type, _, dst_type = dst_rel.split("__") | ||
if src_type != dst_type: | ||
x_dst_dict[dst_rel] = t_list[i + n_src_rel] | ||
|
||
return x_src_dict, x_dst_dict | ||
|
||
def reset_parameters(self, seed: Optional[int] = None): | ||
if seed is not None: | ||
torch.manual_seed(seed) | ||
|
||
w_src, w_dst = self.split_tensors(self.lin_weights, dim=0) | ||
|
||
for i, edge_type in enumerate(self.edge_types): | ||
src_type, etype, dst_type = edge_type | ||
etype_str = "__".join(edge_type) | ||
# lin_src | ||
torch_geometric.nn.inits.glorot(w_src[etype_str]) | ||
|
||
# lin_dst | ||
if src_type != dst_type: | ||
torch_geometric.nn.inits.glorot(w_dst[etype_str]) | ||
|
||
# attn_weights | ||
torch_geometric.nn.inits.glorot( | ||
self.attn_weights[etype_str].view(-1, self.num_heads, self.out_channels) | ||
) | ||
|
||
# bias | ||
if self.bias is not None: | ||
torch_geometric.nn.inits.zeros(self.bias[etype_str]) | ||
|
||
def forward(self, x_dict: dict, edge_index_dict: dict): | ||
feat_dict = {ntype: None for ntype in x_dict.keys()} | ||
|
||
for ntype, x in x_dict.items(): | ||
feat_dict[ntype] = x @ self.lin_weights[ntype].T | ||
|
||
x_src_dict, x_dst_dict = self.split_tensors(feat_dict, dim=1) | ||
|
||
out_dict = defaultdict(list) | ||
|
||
for edge_type, edge_index in edge_index_dict.items(): | ||
src_type, etype, dst_type = edge_type | ||
etype_str = "__".join(edge_type) | ||
|
||
csc = BaseConv.to_csc( | ||
edge_index, (x_dict[src_type].size(0), x_dict[dst_type].size(0)) | ||
) | ||
|
||
if src_type == dst_type: | ||
graph = self.get_cugraph( | ||
csc, | ||
bipartite=False, | ||
) | ||
out = mha_gat_n2n( | ||
x_src_dict[etype_str], | ||
self.attn_weights[etype_str], | ||
graph, | ||
num_heads=self.num_heads, | ||
activation="LeakyReLU", | ||
negative_slope=self.negative_slope, | ||
concat_heads=self.concat_heads, | ||
) | ||
|
||
else: | ||
graph = self.get_cugraph( | ||
csc, | ||
bipartite=True, | ||
) | ||
out = mha_gat_n2n( | ||
(x_src_dict[etype_str], x_dst_dict[etype_str]), | ||
self.attn_weights[etype_str], | ||
graph, | ||
num_heads=self.num_heads, | ||
activation="LeakyReLU", | ||
negative_slope=self.negative_slope, | ||
concat_heads=self.concat_heads, | ||
) | ||
|
||
if self.bias is not None: | ||
out = out + self.bias[etype_str] | ||
|
||
out_dict[dst_type].append(out) | ||
|
||
for key, value in out_dict.items(): | ||
out_dict[key] = torch_geometric.nn.conv.hetero_conv.group(value, self.aggr) | ||
|
||
return out_dict |