Skip to content

Commit

Permalink
Merge branch 'branch-24.02' into fea/mark_kernels_as_internal
Browse files Browse the repository at this point in the history
  • Loading branch information
robertmaynard authored Jan 19, 2024
2 parents a931ba2 + c5d2a9a commit 2c1d5eb
Show file tree
Hide file tree
Showing 13 changed files with 348 additions and 44 deletions.
6 changes: 3 additions & 3 deletions cpp/include/cugraph/mtmg/resource_manager.hpp
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/*
* Copyright (c) 2023, NVIDIA CORPORATION.
* Copyright (c) 2023-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand Down Expand Up @@ -106,9 +106,9 @@ class resource_manager_t {
auto per_device_it = per_device_rmm_resources_.insert(
std::pair{global_rank, std::make_shared<rmm::mr::cuda_memory_resource>()});
#else
auto const [free, total] = rmm::detail::available_device_memory();
auto const [free, total] = rmm::available_device_memory();
auto const min_alloc =
rmm::detail::align_down(std::min(free, total / 6), rmm::detail::CUDA_ALLOCATION_ALIGNMENT);
rmm::align_down(std::min(free, total / 6), rmm::CUDA_ALLOCATION_ALIGNMENT);

auto per_device_it = per_device_rmm_resources_.insert(
std::pair{global_rank,
Expand Down
7 changes: 3 additions & 4 deletions cpp/tests/utilities/base_fixture.hpp
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
* Copyright (c) 2020-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand Down Expand Up @@ -73,9 +73,8 @@ inline auto make_pool()
// run more than 2 tests in parallel at the same time. Changes to this value could
// effect the maximum amount of parallel tests, and therefore `tests/CMakeLists.txt`
// `_CUGRAPH_TEST_PERCENT` default value will need to be audited.
auto const [free, total] = rmm::detail::available_device_memory();
auto const min_alloc =
rmm::detail::align_down(std::min(free, total / 6), rmm::detail::CUDA_ALLOCATION_ALIGNMENT);
auto const [free, total] = rmm::available_device_memory();
auto const min_alloc = rmm::align_down(std::min(free, total / 6), rmm::CUDA_ALLOCATION_ALIGNMENT);
return rmm::mr::make_owning_wrapper<rmm::mr::pool_memory_resource>(make_cuda(), min_alloc);
}

Expand Down
2 changes: 2 additions & 0 deletions python/nx-cugraph/_nx_cugraph/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,10 +91,12 @@
"number_weakly_connected_components",
"octahedral_graph",
"out_degree_centrality",
"overall_reciprocity",
"pagerank",
"pappus_graph",
"path_graph",
"petersen_graph",
"reciprocity",
"sedgewick_maze_graph",
"single_source_shortest_path_length",
"single_target_shortest_path_length",
Expand Down
14 changes: 7 additions & 7 deletions python/nx-cugraph/lint.yaml
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2023, NVIDIA CORPORATION.
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
#
# https://pre-commit.com/
#
Expand Down Expand Up @@ -36,7 +36,7 @@ repos:
- id: autoflake
args: [--in-place]
- repo: https://github.com/pycqa/isort
rev: 5.12.0
rev: 5.13.2
hooks:
- id: isort
- repo: https://github.com/asottile/pyupgrade
Expand All @@ -45,23 +45,23 @@ repos:
- id: pyupgrade
args: [--py39-plus]
- repo: https://github.com/psf/black
rev: 23.11.0
rev: 23.12.1
hooks:
- id: black
# - id: black-jupyter
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.1.7
rev: v0.1.13
hooks:
- id: ruff
args: [--fix-only, --show-fixes] # --unsafe-fixes]
- repo: https://github.com/PyCQA/flake8
rev: 6.1.0
rev: 7.0.0
hooks:
- id: flake8
args: ['--per-file-ignores=_nx_cugraph/__init__.py:E501', '--extend-ignore=SIM105'] # Why is this necessary?
additional_dependencies: &flake8_dependencies
# These versions need updated manually
- flake8==6.1.0
- flake8==7.0.0
- flake8-bugbear==23.12.2
- flake8-simplify==0.21.0
- repo: https://github.com/asottile/yesqa
Expand All @@ -77,7 +77,7 @@ repos:
additional_dependencies: [tomli]
files: ^(nx_cugraph|docs)/
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.1.7
rev: v0.1.13
hooks:
- id: ruff
- repo: https://github.com/pre-commit/pre-commit-hooks
Expand Down
3 changes: 2 additions & 1 deletion python/nx-cugraph/nx_cugraph/algorithms/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2023, NVIDIA CORPORATION.
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Expand Down Expand Up @@ -26,5 +26,6 @@
from .dag import *
from .isolate import *
from .link_analysis import *
from .reciprocity import *
from .shortest_paths import *
from .traversal import *
93 changes: 93 additions & 0 deletions python/nx-cugraph/nx_cugraph/algorithms/reciprocity.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cupy as cp
import networkx as nx
import numpy as np

from nx_cugraph.convert import _to_directed_graph
from nx_cugraph.utils import networkx_algorithm, not_implemented_for

__all__ = ["reciprocity", "overall_reciprocity"]


@not_implemented_for("undirected", "multigraph")
@networkx_algorithm(version_added="24.02")
def reciprocity(G, nodes=None):
if nodes is None:
return overall_reciprocity(G)
G = _to_directed_graph(G)
N = G._N
# 'nodes' can also be a single node identifier
if nodes in G:
index = nodes if G.key_to_id is None else G.key_to_id[nodes]
mask = (G.src_indices == index) | (G.dst_indices == index)
src_indices = G.src_indices[mask]
if src_indices.size == 0:
raise nx.NetworkXError("Not defined for isolated nodes.")
dst_indices = G.dst_indices[mask]
# Create two lists of edge identifiers, one for each direction.
# Edge identifiers can be created from a pair of node
# identifiers. Simply adding src IDs to dst IDs is not adequate, so
# make one set of values (either src or dst depending on direction)
# unique by multiplying values by N.
# Upcast to int64 so indices don't overflow.
edges_a_b = N * src_indices.astype(np.int64) + dst_indices
edges_b_a = src_indices + N * dst_indices.astype(np.int64)
# Find the matching edge identifiers in each list. The edge identifier
# generation ensures the ID for A->B == the ID for B->A
recip_indices = cp.intersect1d(
edges_a_b,
edges_b_a,
# assume_unique=True, # cupy <= 12.2.0 also assumes sorted
)
num_selfloops = (src_indices == dst_indices).sum().tolist()
return (recip_indices.size - num_selfloops) / edges_a_b.size

# Don't include self-loops
mask = G.src_indices != G.dst_indices
src_indices = G.src_indices[mask]
dst_indices = G.dst_indices[mask]
# Create two lists of edges, one for each direction, and find the matching
# IDs in each list (see description above).
edges_a_b = N * src_indices.astype(np.int64) + dst_indices
edges_b_a = src_indices + N * dst_indices.astype(np.int64)
recip_indices = cp.intersect1d(
edges_a_b,
edges_b_a,
# assume_unique=True, # cupy <= 12.2.0 also assumes sorted
)
numer = cp.bincount(recip_indices // N, minlength=N)
denom = cp.bincount(src_indices, minlength=N)
denom += cp.bincount(dst_indices, minlength=N)
recip = 2 * numer / denom
node_ids = G._nodekeys_to_nodearray(nodes)
return G._nodearrays_to_dict(node_ids, recip[node_ids])


@not_implemented_for("undirected", "multigraph")
@networkx_algorithm(version_added="24.02")
def overall_reciprocity(G):
G = _to_directed_graph(G)
if G.number_of_edges() == 0:
raise nx.NetworkXError("Not defined for empty graphs")
# Create two lists of edges, one for each direction, and find the matching
# IDs in each list (see description in reciprocity()).
edges_a_b = G._N * G.src_indices.astype(np.int64) + G.dst_indices
edges_b_a = G.src_indices + G._N * G.dst_indices.astype(np.int64)
recip_indices = cp.intersect1d(
edges_a_b,
edges_b_a,
# assume_unique=True, # cupy <= 12.2.0 also assumes sorted
)
num_selfloops = (G.src_indices == G.dst_indices).sum().tolist()
return (recip_indices.size - num_selfloops) / edges_a_b.size
114 changes: 113 additions & 1 deletion python/nx-cugraph/nx_cugraph/classes/digraph.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2023, NVIDIA CORPORATION.
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Expand All @@ -12,13 +12,16 @@
# limitations under the License.
from __future__ import annotations

from copy import deepcopy
from typing import TYPE_CHECKING

import cupy as cp
import networkx as nx
import numpy as np

import nx_cugraph as nxcg

from ..utils import index_dtype
from .graph import Graph

if TYPE_CHECKING: # pragma: no cover
Expand Down Expand Up @@ -59,6 +62,115 @@ def number_of_edges(
def reverse(self, copy: bool = True) -> DiGraph:
return self._copy(not copy, self.__class__, reverse=True)

@networkx_api
def to_undirected(self, reciprocal=False, as_view=False):
N = self._N
# Upcast to int64 so indices don't overflow
src_dst_indices_old = N * self.src_indices.astype(np.int64) + self.dst_indices
if reciprocal:
src_dst_indices_new = cp.intersect1d(
src_dst_indices_old,
self.src_indices + N * self.dst_indices.astype(np.int64),
# assume_unique=True, # cupy <= 12.2.0 also assumes sorted
)
if self.edge_values:
sorter = cp.argsort(src_dst_indices_old)
idx = cp.searchsorted(
src_dst_indices_old, src_dst_indices_new, sorter=sorter
)
indices = sorter[idx]
src_indices = self.src_indices[indices].copy()
dst_indices = self.dst_indices[indices].copy()
edge_values = {
key: val[indices].copy() for key, val in self.edge_values.items()
}
edge_masks = {
key: val[indices].copy() for key, val in self.edge_masks.items()
}
else:
src_indices, dst_indices = cp.divmod(
src_dst_indices_new, N, dtype=index_dtype
)
else:
src_dst_indices_old_T = self.src_indices + N * self.dst_indices.astype(
np.int64
)
if self.edge_values:
src_dst_extra = cp.setdiff1d(
src_dst_indices_old_T, src_dst_indices_old, assume_unique=True
)
sorter = cp.argsort(src_dst_indices_old_T)
idx = cp.searchsorted(
src_dst_indices_old_T, src_dst_extra, sorter=sorter
)
indices = sorter[idx]
src_indices = cp.hstack((self.src_indices, self.dst_indices[indices]))
dst_indices = cp.hstack((self.dst_indices, self.src_indices[indices]))
edge_values = {
key: cp.hstack((val, val[indices]))
for key, val in self.edge_values.items()
}
edge_masks = {
key: cp.hstack((val, val[indices]))
for key, val in self.edge_masks.items()
}
else:
src_dst_indices_new = cp.union1d(
src_dst_indices_old, src_dst_indices_old_T
)
src_indices, dst_indices = cp.divmod(
src_dst_indices_new, N, dtype=index_dtype
)

if self.edge_values:
recip_indices = cp.lexsort(cp.vstack((src_indices, dst_indices)))
for key, mask in edge_masks.items():
# Make sure we choose a value that isn't masked out
val = edge_values[key]
rmask = mask[recip_indices]
recip_only = rmask & ~mask
val[recip_only] = val[recip_indices[recip_only]]
only = mask & ~rmask
val[recip_indices[only]] = val[only]
mask |= mask[recip_indices]
# Arbitrarily choose to use value from (j > i) edge
mask = src_indices < dst_indices
left_idx = cp.nonzero(mask)[0]
right_idx = recip_indices[mask]
for val in edge_values.values():
val[left_idx] = val[right_idx]
else:
edge_values = {}
edge_masks = {}

node_values = self.node_values
node_masks = self.node_masks
key_to_id = self.key_to_id
id_to_key = None if key_to_id is None else self._id_to_key
if not as_view:
node_values = {key: val.copy() for key, val in node_values.items()}
node_masks = {key: val.copy() for key, val in node_masks.items()}
if key_to_id is not None:
key_to_id = key_to_id.copy()
if id_to_key is not None:
id_to_key = id_to_key.copy()
rv = self.to_undirected_class().from_coo(
N,
src_indices,
dst_indices,
edge_values,
edge_masks,
node_values,
node_masks,
key_to_id=key_to_id,
id_to_key=id_to_key,
)
if as_view:
rv.graph = self.graph
else:
rv.graph.update(deepcopy(self.graph))
return rv

# Many more methods to implement...

###################
Expand Down
7 changes: 6 additions & 1 deletion python/nx-cugraph/nx_cugraph/classes/graph.py
Original file line number Diff line number Diff line change
Expand Up @@ -531,7 +531,7 @@ def to_directed(self, as_view: bool = False) -> nxcg.DiGraph:
@networkx_api
def to_undirected(self, as_view: bool = False) -> Graph:
# Does deep copy in networkx
return self.copy(as_view)
return self._copy(as_view, self.to_undirected_class())

# Not implemented...
# adj, adjacency, add_edge, add_edges_from, add_node,
Expand Down Expand Up @@ -742,6 +742,11 @@ def _degrees_array(self):
_out_degrees_array = _degrees_array

# Data conversions
def _nodekeys_to_nodearray(self, nodes: Iterable[NodeKey]) -> cp.array[IndexValue]:
if self.key_to_id is None:
return cp.fromiter(nodes, dtype=index_dtype)
return cp.fromiter(map(self.key_to_id.__getitem__, nodes), dtype=index_dtype)

def _nodeiter_to_iter(self, node_ids: Iterable[IndexValue]) -> Iterable[NodeKey]:
"""Convert an iterable of node IDs to an iterable of node keys."""
if (id_to_key := self.id_to_key) is not None:
Expand Down
10 changes: 9 additions & 1 deletion python/nx-cugraph/nx_cugraph/classes/multidigraph.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2023, NVIDIA CORPORATION.
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Expand Down Expand Up @@ -33,3 +33,11 @@ def is_directed(cls) -> bool:
@classmethod
def to_networkx_class(cls) -> type[nx.MultiDiGraph]:
return nx.MultiDiGraph

##########################
# NetworkX graph methods #
##########################

@networkx_api
def to_undirected(self, reciprocal=False, as_view=False):
raise NotImplementedError
Loading

0 comments on commit 2c1d5eb

Please sign in to comment.