-
Notifications
You must be signed in to change notification settings - Fork 309
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
update branch with the latest changes
- Loading branch information
Showing
10 changed files
with
361 additions
and
151 deletions.
There are no files selected for viewing
291 changes: 291 additions & 0 deletions
291
benchmarks/cugraph-dgl/python-script/dgl_dataloading_benchmark/dgl_benchmark.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,291 @@ | ||
# Copyright (c) 2023, NVIDIA CORPORATION. | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
import dgl | ||
import torch | ||
import pandas as pd | ||
import os | ||
import time | ||
import json | ||
import random | ||
import numpy as np | ||
from argparse import ArgumentParser | ||
|
||
|
||
def load_edges_from_disk(parquet_path, replication_factor, input_meta): | ||
""" | ||
Load the edges from disk into a graph data dictionary. | ||
Args: | ||
parquet_path: Path to the parquet directory. | ||
replication_factor: Number of times to replicate the edges. | ||
input_meta: Input meta data. | ||
Returns: | ||
dict: Dictionary of edge types to a tuple of (src, dst) | ||
""" | ||
graph_data = {} | ||
for edge_type in input_meta["num_edges"].keys(): | ||
print( | ||
f"Loading edge index for edge type {edge_type}" | ||
f"for replication factor = {replication_factor}" | ||
) | ||
can_edge_type = tuple(edge_type.split("__")) | ||
# TODO: Rename `edge_index` to a better name | ||
ei = pd.read_parquet( | ||
os.path.join(parquet_path, edge_type, "edge_index.parquet") | ||
) | ||
ei = { | ||
"src": torch.from_numpy(ei.src.values), | ||
"dst": torch.from_numpy(ei.dst.values), | ||
} | ||
if replication_factor > 1: | ||
src_ls = [ei["src"]] | ||
dst_ls = [ei["dst"]] | ||
for r in range(1, replication_factor): | ||
new_src = ei["src"] + ( | ||
r * input_meta["num_nodes"][can_edge_type[0]] | ||
) | ||
src_ls.append(new_src) | ||
new_dst = ei["dst"] + ( | ||
r * input_meta["num_nodes"][can_edge_type[2]] | ||
) | ||
dst_ls.append(new_dst) | ||
|
||
ei["src"] = torch.cat(src_ls).contiguous() | ||
ei["dst"] = torch.cat(dst_ls).contiguous() | ||
graph_data[can_edge_type] = ei["src"], ei["dst"] | ||
print("Graph Data compiled") | ||
return graph_data | ||
|
||
|
||
def load_node_labels(dataset_path, replication_factor, input_meta): | ||
num_nodes_dict = { | ||
node_type: t * replication_factor | ||
for node_type, t in input_meta["num_nodes"].items() | ||
} | ||
node_data = {} | ||
for node_type in input_meta["num_nodes"].keys(): | ||
node_data[node_type] = {} | ||
label_path = os.path.join( | ||
dataset_path, "parquet", node_type, "node_label.parquet" | ||
) | ||
if os.path.exists(label_path): | ||
node_label = pd.read_parquet(label_path) | ||
if replication_factor > 1: | ||
base_num_nodes = input_meta["num_nodes"][node_type] | ||
dfr = pd.DataFrame( | ||
{ | ||
"node": pd.concat( | ||
[ | ||
node_label.node + (r * base_num_nodes) | ||
for r in range(1, replication_factor) | ||
] | ||
), | ||
"label": pd.concat( | ||
[ | ||
node_label.label | ||
for r in range(1, replication_factor) | ||
] | ||
), | ||
} | ||
) | ||
node_label = pd.concat([node_label, dfr]).reset_index( | ||
drop=True | ||
) | ||
|
||
node_label_tensor = torch.full( | ||
(num_nodes_dict[node_type],), -1, dtype=torch.float32 | ||
) | ||
node_label_tensor[ | ||
torch.as_tensor(node_label.node.values) | ||
] = torch.as_tensor(node_label.label.values) | ||
|
||
del node_label | ||
node_data[node_type]["train_idx"] = ( | ||
(node_label_tensor > -1).contiguous().nonzero().view(-1) | ||
) | ||
node_data[node_type]["y"] = node_label_tensor.contiguous() | ||
else: | ||
node_data[node_type]["num_nodes"] = num_nodes_dict[node_type] | ||
return node_data | ||
|
||
|
||
def create_dgl_graph_from_disk(dataset_path, replication_factor=1): | ||
""" | ||
Create a DGL graph from a dataset on disk. | ||
Args: | ||
dataset_path: Path to the dataset on disk. | ||
replication_factor: Number of times to replicate the edges. | ||
Returns: | ||
DGLGraph: DGLGraph with the loaded dataset. | ||
""" | ||
with open(os.path.join(dataset_path, "meta.json"), "r") as f: | ||
input_meta = json.load(f) | ||
|
||
parquet_path = os.path.join(dataset_path, "parquet") | ||
graph_data = load_edges_from_disk( | ||
parquet_path, replication_factor, input_meta | ||
) | ||
node_data = load_node_labels(dataset_path, replication_factor, input_meta) | ||
g = dgl.heterograph(graph_data) | ||
|
||
return g, node_data | ||
|
||
|
||
def create_dataloader(g, train_idx, batch_size, fanouts, use_uva): | ||
""" | ||
Create a DGL dataloader from a DGL graph. | ||
Args: | ||
g: DGLGraph to create the dataloader from. | ||
train_idx: Tensor containing the training indices. | ||
batch_size: Batch size to use for the dataloader. | ||
fanouts: List of fanouts to use for the dataloader. | ||
use_uva: Whether to use unified virtual address space. | ||
Returns: | ||
DGLGraph: DGLGraph with the loaded dataset. | ||
""" | ||
|
||
print("Creating dataloader", flush=True) | ||
st = time.time() | ||
if use_uva: | ||
train_idx = {k: v.to("cuda") for k, v in train_idx.items()} | ||
sampler = dgl.dataloading.MultiLayerNeighborSampler(fanouts=fanouts) | ||
dataloader = dgl.dataloading.DataLoader( | ||
g, | ||
train_idx, | ||
sampler, | ||
num_workers=0, | ||
batch_size=batch_size, | ||
use_uva=use_uva, | ||
shuffle=False, | ||
drop_last=False, | ||
) | ||
et = time.time() | ||
print(f"Time to create dataloader = {et - st:.2f} seconds") | ||
return dataloader | ||
|
||
|
||
def dataloading_benchmark(g, train_idx, fanouts, batch_sizes, use_uva): | ||
""" | ||
Run the dataloading benchmark. | ||
Args: | ||
g: DGLGraph | ||
train_idx: Tensor containing the training indices. | ||
fanouts: List of fanouts to use for the dataloader. | ||
batch_sizes: List of batch sizes to use for the dataloader. | ||
use_uva: Whether to use unified virtual address space. | ||
""" | ||
time_ls = [] | ||
for fanout in fanouts: | ||
for batch_size in batch_sizes: | ||
dataloader = create_dataloader( | ||
g, | ||
train_idx, | ||
batch_size=batch_size, | ||
fanouts=fanout, | ||
use_uva=use_uva, | ||
) | ||
dataloading_st = time.time() | ||
for input_nodes, output_nodes, blocks in dataloader: | ||
pass | ||
dataloading_et = time.time() | ||
dataloading_time = dataloading_et - dataloading_st | ||
time_d = { | ||
"fanout": fanout, | ||
"batch_size": batch_size, | ||
"dataloading_time_per_epoch": dataloading_time, | ||
"dataloading_time_per_batch": dataloading_time / len(dataloader), | ||
"num_edges": g.num_edges(), | ||
"num_batches": len(dataloader), | ||
} | ||
time_ls.append(time_d) | ||
|
||
print("Dataloading completed") | ||
print(f"Fanout = {fanout}, batch_size = {batch_size}") | ||
print( | ||
f"Time taken {dataloading_time:.2f} ", | ||
f"seconds for num batches {len(dataloader)}", | ||
flush=True, | ||
) | ||
print("==============================================") | ||
return time_ls | ||
|
||
def set_seed(seed): | ||
random.seed(seed) | ||
np.random.seed(seed) | ||
torch.manual_seed(seed) | ||
torch.cuda.manual_seed_all(seed) | ||
|
||
if __name__ == "__main__": | ||
parser = ArgumentParser() | ||
parser.add_argument( | ||
"--dataset_path", type=str, default="/datasets/abarghi/ogbn_papers100M" | ||
) | ||
parser.add_argument("--replication_factors", type=str, default="1,2,4,8") | ||
parser.add_argument( | ||
"--fanouts", type=str, default="25_25,10_10_10,5_10_20" | ||
) | ||
parser.add_argument("--batch_sizes", type=str, default="512,1024") | ||
parser.add_argument("--do_not_use_uva", action="store_true") | ||
parser.add_argument("--seed", type=int, default=42) | ||
args = parser.parse_args() | ||
|
||
if args.do_not_use_uva: | ||
use_uva = False | ||
else: | ||
use_uva = True | ||
set_seed(args.seed) | ||
replication_factors = [int(x) for x in args.replication_factors.split(",")] | ||
fanouts = [[int(y) for y in x.split("_")] for x in args.fanouts.split(",")] | ||
batch_sizes = [int(x) for x in args.batch_sizes.split(",")] | ||
|
||
print("Running dgl dataloading benchmark with the following parameters:") | ||
print(f"Dataset path = {args.dataset_path}") | ||
print(f"Replication factors = {replication_factors}") | ||
print(f"Fanouts = {fanouts}") | ||
print(f"Batch sizes = {batch_sizes}") | ||
print(f"Use UVA = {use_uva}") | ||
print("==============================================") | ||
|
||
time_ls = [] | ||
for replication_factor in replication_factors: | ||
st = time.time() | ||
g, node_data = create_dgl_graph_from_disk( | ||
dataset_path=args.dataset_path, | ||
replication_factor=replication_factor, | ||
) | ||
et = time.time() | ||
print(f"Replication factor = {replication_factor}") | ||
print( | ||
f"G has {g.num_edges()} edges and took", | ||
f" {et - st:.2f} seconds to load" | ||
) | ||
train_idx = {"paper": node_data["paper"]["train_idx"]} | ||
r_time_ls = dataloading_benchmark( | ||
g, train_idx, fanouts, batch_sizes, use_uva=use_uva | ||
) | ||
print( | ||
"Benchmark completed for replication factor = ", replication_factor | ||
) | ||
print("==============================================") | ||
# Add replication factor to the time list | ||
[ | ||
x.update({"replication_factor": replication_factor}) | ||
for x in r_time_ls | ||
] | ||
time_ls.extend(r_time_ls) | ||
|
||
df = pd.DataFrame(time_ls) | ||
df.to_csv("dgl_dataloading_benchmark.csv", index=False) | ||
print("Benchmark completed for all replication factors") | ||
print("==============================================") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -14,6 +14,7 @@ | |
import gc | ||
from typing import Union | ||
import warnings | ||
import random | ||
|
||
import cudf | ||
import cupy as cp | ||
|
Oops, something went wrong.