Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Forward-merge branch-24.10 into branch-24.12 #16909

Merged
merged 1 commit into from
Sep 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions python/cudf/cudf/pandas/fast_slow_proxy.py
Original file line number Diff line number Diff line change
Expand Up @@ -881,6 +881,12 @@ def _assert_fast_slow_eq(left, right):
assert_eq(left, right)


class ProxyFallbackError(Exception):
"""Raised when fallback occurs"""

pass


def _fast_function_call():
"""
Placeholder fast function for pytest profiling purposes.
Expand Down Expand Up @@ -957,6 +963,10 @@ def _fast_slow_function_call(
f"The exception was {e}."
)
except Exception as err:
if _env_get_bool("CUDF_PANDAS_FAIL_ON_FALLBACK", False):
raise ProxyFallbackError(
f"The operation failed with cuDF, the reason was {type(err)}: {err}."
) from err
with nvtx.annotate(
"EXECUTE_SLOW",
color=_CUDF_PANDAS_NVTX_COLORS["EXECUTE_SLOW"],
Expand Down
16 changes: 15 additions & 1 deletion python/cudf/cudf_pandas_tests/test_cudf_pandas.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,11 @@

from cudf.core._compat import PANDAS_GE_220
from cudf.pandas import LOADED, Profiler
from cudf.pandas.fast_slow_proxy import _Unusable, is_proxy_object
from cudf.pandas.fast_slow_proxy import (
ProxyFallbackError,
_Unusable,
is_proxy_object,
)
from cudf.testing import assert_eq

if not LOADED:
Expand Down Expand Up @@ -1738,3 +1742,13 @@ def add_one_ufunc(a):
return a + 1

assert_eq(cp.asarray(add_one_ufunc(arr1)), cp.asarray(add_one_ufunc(arr2)))


@pytest.mark.xfail(
reason="Fallback expected because casting to object is not supported",
)
def test_fallback_raises_error(monkeypatch):
with monkeypatch.context() as monkeycontext:
monkeycontext.setenv("CUDF_PANDAS_FAIL_ON_FALLBACK", "True")
with pytest.raises(ProxyFallbackError):
pd.Series(range(2)).astype(object)
100 changes: 100 additions & 0 deletions python/cudf/cudf_pandas_tests/test_cudf_pandas_no_fallback.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
# SPDX-FileCopyrightText: Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES.
# All rights reserved.
# SPDX-License-Identifier: Apache-2.0

import pytest

from cudf.pandas import LOADED

if not LOADED:
raise ImportError("These tests must be run with cudf.pandas loaded")

import numpy as np
import pandas as pd


@pytest.fixture(autouse=True)
def fail_on_fallback(monkeypatch):
monkeypatch.setenv("CUDF_PANDAS_FAIL_ON_FALLBACK", "True")


@pytest.fixture
def dataframe():
df = pd.DataFrame(
{
"a": [1, 1, 1, 2, 3],
"b": [1, 2, 3, 4, 5],
"c": [1.2, 1.3, 1.5, 1.7, 1.11],
}
)
return df


@pytest.fixture
def series(dataframe):
return dataframe["a"]


@pytest.fixture
def array(series):
return series.values


@pytest.mark.parametrize(
"op",
[
"sum",
"min",
"max",
"mean",
"std",
"var",
"prod",
"median",
],
)
def test_no_fallback_in_reduction_ops(series, op):
s = series
getattr(s, op)()


def test_groupby(dataframe):
df = dataframe
df.groupby("a", sort=True).max()


def test_no_fallback_in_binops(dataframe):
df = dataframe
df + df
df - df
df * df
df**df
df[["a", "b"]] & df[["a", "b"]]
df <= df


def test_no_fallback_in_groupby_rolling_sum(dataframe):
df = dataframe
df.groupby("a").rolling(2).sum()


def test_no_fallback_in_concat(dataframe):
df = dataframe
pd.concat([df, df])


def test_no_fallback_in_get_shape(dataframe):
df = dataframe
df.shape


def test_no_fallback_in_array_ufunc_op(array):
np.add(array, array)


def test_no_fallback_in_merge(dataframe):
df = dataframe
pd.merge(df * df, df + df, how="inner")
pd.merge(df * df, df + df, how="outer")
pd.merge(df * df, df + df, how="left")
pd.merge(df * df, df + df, how="right")
Loading