Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor hash_reduce_by_row #14095

Merged
merged 19 commits into from
Sep 13, 2023
Merged
Show file tree
Hide file tree
Changes from 14 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion cpp/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -530,7 +530,7 @@ add_library(
src/stream_compaction/apply_boolean_mask.cu
src/stream_compaction/distinct.cu
src/stream_compaction/distinct_count.cu
src/stream_compaction/distinct_reduce.cu
src/stream_compaction/distinct_helpers.cu
src/stream_compaction/drop_nans.cu
src/stream_compaction/drop_nulls.cu
src/stream_compaction/stable_distinct.cu
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -14,61 +14,56 @@
* limitations under the License.
*/

#include "distinct_reduce.cuh"
#include <stream_compaction/stream_compaction_common.cuh>
ttnghia marked this conversation as resolved.
Show resolved Hide resolved

#include <cudf/table/experimental/row_operators.cuh>
#include <cudf/types.hpp>

#include <rmm/cuda_stream_view.hpp>
#include <rmm/device_uvector.hpp>
#include <rmm/exec_policy.hpp>

#include <thrust/for_each.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/uninitialized_fill.h>

namespace cudf::detail {

namespace {
/**
* @brief A functor to perform reduce-by-key with keys are rows that compared equal.
* @brief The base struct for customized reduction functor to perform reduce-by-key with keys are
* rows that compared equal.
*
* TODO: We need to switch to use `static_reduction_map` when it is ready
* (https://github.com/NVIDIA/cuCollections/pull/98).
*/
template <typename MapView, typename KeyHasher, typename KeyEqual>
struct reduce_by_row_fn {
template <typename MapView, typename KeyHasher, typename KeyEqual, typename OutputType>
struct reduce_by_row_fn_base {
protected:
MapView const d_map;
KeyHasher const d_hasher;
KeyEqual const d_equal;
duplicate_keep_option const keep;
size_type* const d_output;

reduce_by_row_fn(MapView const& d_map,
KeyHasher const& d_hasher,
KeyEqual const& d_equal,
duplicate_keep_option const keep,
size_type* const d_output)
: d_map{d_map}, d_hasher{d_hasher}, d_equal{d_equal}, keep{keep}, d_output{d_output}
{
}
OutputType* const d_output;

__device__ void operator()(size_type const idx) const
reduce_by_row_fn_base(MapView const& d_map,
KeyHasher const& d_hasher,
KeyEqual const& d_equal,
OutputType* const d_output)
: d_map{d_map}, d_hasher{d_hasher}, d_equal{d_equal}, d_output{d_output}
{
auto const out_ptr = get_output_ptr(idx);

if (keep == duplicate_keep_option::KEEP_FIRST) {
// Store the smallest index of all rows that are equal.
atomicMin(out_ptr, idx);
} else if (keep == duplicate_keep_option::KEEP_LAST) {
// Store the greatest index of all rows that are equal.
atomicMax(out_ptr, idx);
} else {
// Count the number of rows in each group of rows that are compared equal.
atomicAdd(out_ptr, size_type{1});
}
}

private:
__device__ size_type* get_output_ptr(size_type const idx) const
/**
* @brief Return a pointer to the output array at the given index.
*
* @param idx The access index
* @return A pointer to the given index in the output array
*/
__device__ OutputType* get_output_ptr(size_type const idx) const
{
auto const iter = d_map.find(idx, d_hasher, d_equal);

if (iter != d_map.end()) {
// Only one index value of the duplicate rows could be inserted into the map.
// Only one (undetermined) index value of the duplicate rows could be inserted into the map.
// As such, looking up for all indices of duplicate rows always returns the same value.
auto const inserted_idx = iter->second.load(cuda::std::memory_order_relaxed);

Expand All @@ -86,34 +81,55 @@ struct reduce_by_row_fn {
}
};

} // namespace

rmm::device_uvector<size_type> hash_reduce_by_row(
/**
* @brief Perform a reduction on groups of rows that are compared equal.
*
* This is essentially a reduce-by-key operation with keys are non-contiguous rows and are compared
* equal. A hash table is used to find groups of equal rows.
*
* At the beginning of the operation, the entire output array is filled with a value given by
* the `init` parameter. Then, the reduction result for each row group is written into the output
* array at the index of an unspecified row in the group.
*
* @tparam ReduceFuncBuilder The builder class that must have a `build()` method returning a
* reduction functor derived from `reduce_by_row_fn_base`
* @tparam OutputType Type of the reduction results
* @param map The auxiliary map to perform reduction
* @param preprocessed_input The preprocessed of the input rows for computing row hashing and row
* comparisons
* @param num_rows The number of all input rows
* @param has_nulls Indicate whether the input rows has any nulls at any nested levels
* @param has_nested_columns Indicates whether the input table has any nested columns
* @param nulls_equal Flag to specify whether null elements should be considered as equal
* @param nans_equal Flag to specify whether NaN values in floating point column should be
* considered equal.
* @param init The initial value for reduction of each row group
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned vector
* @return A device_uvector containing the reduction results
*/
template <typename ReduceFuncBuilder, typename OutputType>
rmm::device_uvector<OutputType> hash_reduce_by_row(
hash_map_type const& map,
std::shared_ptr<cudf::experimental::row::equality::preprocessed_table> const preprocessed_input,
size_type num_rows,
cudf::nullate::DYNAMIC has_nulls,
bool has_nested_columns,
duplicate_keep_option keep,
null_equality nulls_equal,
nan_equality nans_equal,
ReduceFuncBuilder func_builder,
OutputType init,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
CUDF_EXPECTS(keep != duplicate_keep_option::KEEP_ANY,
"This function should not be called with KEEP_ANY");

auto reduction_results = rmm::device_uvector<size_type>(num_rows, stream, mr);

thrust::uninitialized_fill(rmm::exec_policy(stream),
reduction_results.begin(),
reduction_results.end(),
reduction_init_value(keep));

auto const map_dview = map.get_device_view();
auto const row_hasher = cudf::experimental::row::hash::row_hasher(preprocessed_input);
auto const key_hasher = experimental::compaction_hash(row_hasher.device_hasher(has_nulls));
auto const row_comp = cudf::experimental::row::equality::self_comparator(preprocessed_input);

auto const row_comp = cudf::experimental::row::equality::self_comparator(preprocessed_input);
auto reduction_results = rmm::device_uvector<OutputType>(num_rows, stream, mr);
thrust::uninitialized_fill(
rmm::exec_policy(stream), reduction_results.begin(), reduction_results.end(), init);

auto const reduce_by_row = [&](auto const value_comp) {
if (has_nested_columns) {
Expand All @@ -122,16 +138,14 @@ rmm::device_uvector<size_type> hash_reduce_by_row(
rmm::exec_policy(stream),
thrust::make_counting_iterator(0),
thrust::make_counting_iterator(num_rows),
reduce_by_row_fn{
map.get_device_view(), key_hasher, key_equal, keep, reduction_results.begin()});
func_builder.build(map_dview, key_hasher, key_equal, reduction_results.begin()));
} else {
auto const key_equal = row_comp.equal_to<false>(has_nulls, nulls_equal, value_comp);
thrust::for_each(
rmm::exec_policy(stream),
thrust::make_counting_iterator(0),
thrust::make_counting_iterator(num_rows),
reduce_by_row_fn{
map.get_device_view(), key_hasher, key_equal, keep, reduction_results.begin()});
func_builder.build(map_dview, key_hasher, key_equal, reduction_results.begin()));
}
};

Expand Down
23 changes: 12 additions & 11 deletions cpp/src/stream_compaction/distinct.cu
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,8 @@
* limitations under the License.
*/

#include "distinct_reduce.cuh"
#include "distinct_helpers.hpp"
#include "stream_compaction_common.cuh"

#include <cudf/column/column_view.hpp>
#include <cudf/detail/gather.hpp>
Expand Down Expand Up @@ -96,16 +97,16 @@ rmm::device_uvector<size_type> get_distinct_indices(table_view const& input,
}

// For other keep options, reduce by row on rows that compare equal.
auto const reduction_results = hash_reduce_by_row(map,
std::move(preprocessed_input),
input.num_rows(),
has_nulls,
has_nested_columns,
keep,
nulls_equal,
nans_equal,
stream,
rmm::mr::get_current_device_resource());
auto const reduction_results = indices_reduce_by_row(map,
std::move(preprocessed_input),
input.num_rows(),
has_nulls,
has_nested_columns,
keep,
nulls_equal,
nans_equal,
stream,
rmm::mr::get_current_device_resource());

// Extract the desired output indices from reduction results.
auto const map_end = [&] {
Expand Down
109 changes: 109 additions & 0 deletions cpp/src/stream_compaction/distinct_helpers.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include "distinct_helpers.hpp"

#include <cudf/detail/hash_reduce_by_row.cuh>

namespace cudf::detail {

namespace {
/**
* @brief The functor to find the first/last/all duplicate row for rows that compared equal.
*/
template <typename MapView, typename KeyHasher, typename KeyEqual>
struct reduce_fn : reduce_by_row_fn_base<MapView, KeyHasher, KeyEqual, size_type> {
duplicate_keep_option const keep;

reduce_fn(MapView const& d_map,
KeyHasher const& d_hasher,
KeyEqual const& d_equal,
duplicate_keep_option const keep,
size_type* const d_output)
: reduce_by_row_fn_base<MapView, KeyHasher, KeyEqual, size_type>{d_map,
d_hasher,
d_equal,
d_output},
keep{keep}
{
}

__device__ void operator()(size_type const idx) const
{
auto const out_ptr = this->get_output_ptr(idx);

if (keep == duplicate_keep_option::KEEP_FIRST) {
// Store the smallest index of all rows that are equal.
atomicMin(out_ptr, idx);
} else if (keep == duplicate_keep_option::KEEP_LAST) {
// Store the greatest index of all rows that are equal.
atomicMax(out_ptr, idx);
} else {
// Count the number of rows in each group of rows that are compared equal.
atomicAdd(out_ptr, size_type{1});
}
}
};

/**
* @brief The builder to construct an instance of `reduce_fn` functor base on the given
* value of the `duplicate_keep_option` member variable.
*/
struct reduce_func_builder {
duplicate_keep_option const keep;

template <typename MapView, typename KeyHasher, typename KeyEqual>
auto build(MapView const& d_map,
KeyHasher const& d_hasher,
KeyEqual const& d_equal,
size_type* const d_output)
{
return reduce_fn<MapView, KeyHasher, KeyEqual>{d_map, d_hasher, d_equal, keep, d_output};
}
};

} // namespace

// This function is split from `distinct.cu` to improve compile time.
rmm::device_uvector<size_type> indices_reduce_by_row(
hash_map_type const& map,
std::shared_ptr<cudf::experimental::row::equality::preprocessed_table> const preprocessed_input,
size_type num_rows,
cudf::nullate::DYNAMIC has_nulls,
bool has_nested_columns,
duplicate_keep_option keep,
null_equality nulls_equal,
nan_equality nans_equal,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
CUDF_EXPECTS(keep != duplicate_keep_option::KEEP_ANY,
"This function should not be called with KEEP_ANY");

return hash_reduce_by_row(map,
preprocessed_input,
num_rows,
has_nulls,
has_nested_columns,
nulls_equal,
nans_equal,
reduce_func_builder{keep},
reduction_init_value(keep),
stream,
mr);
}

} // namespace cudf::detail
Original file line number Diff line number Diff line change
Expand Up @@ -14,18 +14,14 @@
* limitations under the License.
*/

#include "stream_compaction_common.cuh"
#include "stream_compaction_common.hpp"

#include <cudf/column/column_device_view.cuh>
#include <cudf/stream_compaction.hpp>
#include <cudf/table/experimental/row_operators.cuh>
#include <cudf/types.hpp>

#include <rmm/cuda_stream_view.hpp>
#include <rmm/device_uvector.hpp>
#include <rmm/exec_policy.hpp>

#include <memory>

namespace cudf::detail {

Expand Down Expand Up @@ -56,6 +52,8 @@ auto constexpr reduction_init_value(duplicate_keep_option keep)
* - If `keep == KEEP_LAST`: max of row indices in the group.
* - If `keep == KEEP_NONE`: count of equivalent rows (group size).
*
* Note that this function is not needed when `keep == KEEP_NONE`.
*
* At the beginning of the operation, the entire output array is filled with a value given by
* the `reduction_init_value()` function. Then, the reduction result for each row group is written
* into the output array at the index of an unspecified row in the group.
Expand All @@ -68,11 +66,13 @@ auto constexpr reduction_init_value(duplicate_keep_option keep)
* @param has_nested_columns Indicates whether the input table has any nested columns
* @param keep The parameter to determine what type of reduction to perform
* @param nulls_equal Flag to specify whether null elements should be considered as equal
* @param nans_equal Flag to specify whether NaN values in floating point column should be
* considered equal.
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned vector
* @return A device_uvector containing the reduction results
*/
rmm::device_uvector<size_type> hash_reduce_by_row(
rmm::device_uvector<size_type> indices_reduce_by_row(
hash_map_type const& map,
std::shared_ptr<cudf::experimental::row::equality::preprocessed_table> const preprocessed_input,
size_type num_rows,
Expand Down