-
Notifications
You must be signed in to change notification settings - Fork 920
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Refactor
hash_reduce_by_row
(#14095)
This PR extracts `hash_reduce_by_row` function from `distinct_reduce.*` files. Previously, that function was designed specifically to work with `distinct` in stream compaction with `size_type` output. Now, it becomes more generic and can support more generic reduction operations and various output types. No new functionality was added. The changes in this work pave the way for implementing histogram/merge histogram aggregations, which also rely on hash-base reduction. Authors: - Nghia Truong (https://github.com/ttnghia) Approvers: - Karthikeyan (https://github.com/karthikeyann) - Yunsong Wang (https://github.com/PointKernel) - Bradley Dice (https://github.com/bdice) URL: #14095
- Loading branch information
Showing
9 changed files
with
299 additions
and
200 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,167 @@ | ||
/* | ||
* Copyright (c) 2022-2023, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include <cudf/table/experimental/row_operators.cuh> | ||
#include <cudf/types.hpp> | ||
|
||
#include <rmm/cuda_stream_view.hpp> | ||
#include <rmm/device_uvector.hpp> | ||
#include <rmm/exec_policy.hpp> | ||
|
||
#include <thrust/for_each.h> | ||
#include <thrust/iterator/counting_iterator.h> | ||
#include <thrust/uninitialized_fill.h> | ||
|
||
#include <cuco/static_map.cuh> | ||
|
||
namespace cudf::detail { | ||
|
||
using hash_map_type = | ||
cuco::static_map<size_type, size_type, cuda::thread_scope_device, hash_table_allocator_type>; | ||
|
||
/** | ||
* @brief The base struct for customized reduction functor to perform reduce-by-key with keys are | ||
* rows that compared equal. | ||
* | ||
* TODO: We need to switch to use `static_reduction_map` when it is ready | ||
* (https://github.com/NVIDIA/cuCollections/pull/98). | ||
*/ | ||
template <typename MapView, typename KeyHasher, typename KeyEqual, typename OutputType> | ||
struct reduce_by_row_fn_base { | ||
protected: | ||
MapView const d_map; | ||
KeyHasher const d_hasher; | ||
KeyEqual const d_equal; | ||
OutputType* const d_output; | ||
|
||
reduce_by_row_fn_base(MapView const& d_map, | ||
KeyHasher const& d_hasher, | ||
KeyEqual const& d_equal, | ||
OutputType* const d_output) | ||
: d_map{d_map}, d_hasher{d_hasher}, d_equal{d_equal}, d_output{d_output} | ||
{ | ||
} | ||
|
||
/** | ||
* @brief Return a pointer to the output array at the given index. | ||
* | ||
* @param idx The access index | ||
* @return A pointer to the given index in the output array | ||
*/ | ||
__device__ OutputType* get_output_ptr(size_type const idx) const | ||
{ | ||
auto const iter = d_map.find(idx, d_hasher, d_equal); | ||
|
||
if (iter != d_map.end()) { | ||
// Only one (undetermined) index value of the duplicate rows could be inserted into the map. | ||
// As such, looking up for all indices of duplicate rows always returns the same value. | ||
auto const inserted_idx = iter->second.load(cuda::std::memory_order_relaxed); | ||
|
||
// All duplicate rows will have concurrent access to this same output slot. | ||
return &d_output[inserted_idx]; | ||
} else { | ||
// All input `idx` values have been inserted into the map before. | ||
// Thus, searching for an `idx` key resulting in the `end()` iterator only happens if | ||
// `d_equal(idx, idx) == false`. | ||
// Such situations are due to comparing nulls or NaNs which are considered as always unequal. | ||
// In those cases, all rows containing nulls or NaNs are distinct. Just return their direct | ||
// output slot. | ||
return &d_output[idx]; | ||
} | ||
} | ||
}; | ||
|
||
/** | ||
* @brief Perform a reduction on groups of rows that are compared equal. | ||
* | ||
* This is essentially a reduce-by-key operation with keys are non-contiguous rows and are compared | ||
* equal. A hash table is used to find groups of equal rows. | ||
* | ||
* At the beginning of the operation, the entire output array is filled with a value given by | ||
* the `init` parameter. Then, the reduction result for each row group is written into the output | ||
* array at the index of an unspecified row in the group. | ||
* | ||
* @tparam ReduceFuncBuilder The builder class that must have a `build()` method returning a | ||
* reduction functor derived from `reduce_by_row_fn_base` | ||
* @tparam OutputType Type of the reduction results | ||
* @param map The auxiliary map to perform reduction | ||
* @param preprocessed_input The preprocessed of the input rows for computing row hashing and row | ||
* comparisons | ||
* @param num_rows The number of all input rows | ||
* @param has_nulls Indicate whether the input rows has any nulls at any nested levels | ||
* @param has_nested_columns Indicates whether the input table has any nested columns | ||
* @param nulls_equal Flag to specify whether null elements should be considered as equal | ||
* @param nans_equal Flag to specify whether NaN values in floating point column should be | ||
* considered equal. | ||
* @param init The initial value for reduction of each row group | ||
* @param stream CUDA stream used for device memory operations and kernel launches | ||
* @param mr Device memory resource used to allocate the returned vector | ||
* @return A device_uvector containing the reduction results | ||
*/ | ||
template <typename ReduceFuncBuilder, typename OutputType> | ||
rmm::device_uvector<OutputType> hash_reduce_by_row( | ||
hash_map_type const& map, | ||
std::shared_ptr<cudf::experimental::row::equality::preprocessed_table> const preprocessed_input, | ||
size_type num_rows, | ||
cudf::nullate::DYNAMIC has_nulls, | ||
bool has_nested_columns, | ||
null_equality nulls_equal, | ||
nan_equality nans_equal, | ||
ReduceFuncBuilder func_builder, | ||
OutputType init, | ||
rmm::cuda_stream_view stream, | ||
rmm::mr::device_memory_resource* mr) | ||
{ | ||
auto const map_dview = map.get_device_view(); | ||
auto const row_hasher = cudf::experimental::row::hash::row_hasher(preprocessed_input); | ||
auto const key_hasher = row_hasher.device_hasher(has_nulls); | ||
auto const row_comp = cudf::experimental::row::equality::self_comparator(preprocessed_input); | ||
|
||
auto reduction_results = rmm::device_uvector<OutputType>(num_rows, stream, mr); | ||
thrust::uninitialized_fill( | ||
rmm::exec_policy(stream), reduction_results.begin(), reduction_results.end(), init); | ||
|
||
auto const reduce_by_row = [&](auto const value_comp) { | ||
if (has_nested_columns) { | ||
auto const key_equal = row_comp.equal_to<true>(has_nulls, nulls_equal, value_comp); | ||
thrust::for_each( | ||
rmm::exec_policy(stream), | ||
thrust::make_counting_iterator(0), | ||
thrust::make_counting_iterator(num_rows), | ||
func_builder.build(map_dview, key_hasher, key_equal, reduction_results.begin())); | ||
} else { | ||
auto const key_equal = row_comp.equal_to<false>(has_nulls, nulls_equal, value_comp); | ||
thrust::for_each( | ||
rmm::exec_policy(stream), | ||
thrust::make_counting_iterator(0), | ||
thrust::make_counting_iterator(num_rows), | ||
func_builder.build(map_dview, key_hasher, key_equal, reduction_results.begin())); | ||
} | ||
}; | ||
|
||
if (nans_equal == nan_equality::ALL_EQUAL) { | ||
using nan_equal_comparator = | ||
cudf::experimental::row::equality::nan_equal_physical_equality_comparator; | ||
reduce_by_row(nan_equal_comparator{}); | ||
} else { | ||
using nan_unequal_comparator = cudf::experimental::row::equality::physical_equality_comparator; | ||
reduce_by_row(nan_unequal_comparator{}); | ||
} | ||
|
||
return reduction_results; | ||
} | ||
|
||
} // namespace cudf::detail |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
/* | ||
* Copyright (c) 2022-2023, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include "distinct_helpers.hpp" | ||
|
||
#include <cudf/detail/hash_reduce_by_row.cuh> | ||
|
||
namespace cudf::detail { | ||
|
||
namespace { | ||
/** | ||
* @brief The functor to find the first/last/all duplicate row for rows that compared equal. | ||
*/ | ||
template <typename MapView, typename KeyHasher, typename KeyEqual> | ||
struct reduce_fn : reduce_by_row_fn_base<MapView, KeyHasher, KeyEqual, size_type> { | ||
duplicate_keep_option const keep; | ||
|
||
reduce_fn(MapView const& d_map, | ||
KeyHasher const& d_hasher, | ||
KeyEqual const& d_equal, | ||
duplicate_keep_option const keep, | ||
size_type* const d_output) | ||
: reduce_by_row_fn_base<MapView, KeyHasher, KeyEqual, size_type>{d_map, | ||
d_hasher, | ||
d_equal, | ||
d_output}, | ||
keep{keep} | ||
{ | ||
} | ||
|
||
__device__ void operator()(size_type const idx) const | ||
{ | ||
auto const out_ptr = this->get_output_ptr(idx); | ||
|
||
if (keep == duplicate_keep_option::KEEP_FIRST) { | ||
// Store the smallest index of all rows that are equal. | ||
atomicMin(out_ptr, idx); | ||
} else if (keep == duplicate_keep_option::KEEP_LAST) { | ||
// Store the greatest index of all rows that are equal. | ||
atomicMax(out_ptr, idx); | ||
} else { | ||
// Count the number of rows in each group of rows that are compared equal. | ||
atomicAdd(out_ptr, size_type{1}); | ||
} | ||
} | ||
}; | ||
|
||
/** | ||
* @brief The builder to construct an instance of `reduce_fn` functor base on the given | ||
* value of the `duplicate_keep_option` member variable. | ||
*/ | ||
struct reduce_func_builder { | ||
duplicate_keep_option const keep; | ||
|
||
template <typename MapView, typename KeyHasher, typename KeyEqual> | ||
auto build(MapView const& d_map, | ||
KeyHasher const& d_hasher, | ||
KeyEqual const& d_equal, | ||
size_type* const d_output) | ||
{ | ||
return reduce_fn<MapView, KeyHasher, KeyEqual>{d_map, d_hasher, d_equal, keep, d_output}; | ||
} | ||
}; | ||
|
||
} // namespace | ||
|
||
// This function is split from `distinct.cu` to improve compile time. | ||
rmm::device_uvector<size_type> reduce_by_row( | ||
hash_map_type const& map, | ||
std::shared_ptr<cudf::experimental::row::equality::preprocessed_table> const preprocessed_input, | ||
size_type num_rows, | ||
cudf::nullate::DYNAMIC has_nulls, | ||
bool has_nested_columns, | ||
duplicate_keep_option keep, | ||
null_equality nulls_equal, | ||
nan_equality nans_equal, | ||
rmm::cuda_stream_view stream, | ||
rmm::mr::device_memory_resource* mr) | ||
{ | ||
CUDF_EXPECTS(keep != duplicate_keep_option::KEEP_ANY, | ||
"This function should not be called with KEEP_ANY"); | ||
|
||
return hash_reduce_by_row(map, | ||
preprocessed_input, | ||
num_rows, | ||
has_nulls, | ||
has_nested_columns, | ||
nulls_equal, | ||
nans_equal, | ||
reduce_func_builder{keep}, | ||
reduction_init_value(keep), | ||
stream, | ||
mr); | ||
} | ||
|
||
} // namespace cudf::detail |
Oops, something went wrong.