Skip to content

Commit

Permalink
Merge remote-tracking branch 'upstream/branch-24.12' into pylibcudf/s…
Browse files Browse the repository at this point in the history
…trings/convert_lists
  • Loading branch information
mroeschke committed Oct 9, 2024
2 parents 3ac2fe5 + dfdae59 commit edfaa92
Show file tree
Hide file tree
Showing 21 changed files with 603 additions and 336 deletions.
296 changes: 296 additions & 0 deletions CHANGELOG.md

Large diffs are not rendered by default.

10 changes: 8 additions & 2 deletions cpp/benchmarks/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -245,6 +245,7 @@ ConfigureNVBench(
REDUCTION_NVBENCH
reduction/anyall.cpp
reduction/dictionary.cpp
reduction/histogram.cpp
reduction/minmax.cpp
reduction/rank.cpp
reduction/reduce.cpp
Expand All @@ -270,8 +271,13 @@ ConfigureBench(
)

ConfigureNVBench(
GROUPBY_NVBENCH groupby/group_max.cpp groupby/group_max_multithreaded.cpp
groupby/group_nunique.cpp groupby/group_rank.cpp groupby/group_struct_keys.cpp
GROUPBY_NVBENCH
groupby/group_histogram.cpp
groupby/group_max.cpp
groupby/group_max_multithreaded.cpp
groupby/group_nunique.cpp
groupby/group_rank.cpp
groupby/group_struct_keys.cpp
)

# ##################################################################################################
Expand Down
90 changes: 90 additions & 0 deletions cpp/benchmarks/groupby/group_histogram.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include <benchmarks/common/generate_input.hpp>
#include <benchmarks/fixture/benchmark_fixture.hpp>

#include <cudf/groupby.hpp>

#include <nvbench/nvbench.cuh>

template <typename Type>
void groupby_histogram_helper(nvbench::state& state,
cudf::size_type num_rows,
cudf::size_type cardinality,
double null_probability)
{
auto const keys = [&] {
data_profile const profile =
data_profile_builder()
.cardinality(cardinality)
.no_validity()
.distribution(cudf::type_to_id<int32_t>(), distribution_id::UNIFORM, 0, num_rows);
return create_random_column(cudf::type_to_id<int32_t>(), row_count{num_rows}, profile);
}();

auto const values = [&] {
auto builder = data_profile_builder().cardinality(0).distribution(
cudf::type_to_id<Type>(), distribution_id::UNIFORM, 0, num_rows);
if (null_probability > 0) {
builder.null_probability(null_probability);
} else {
builder.no_validity();
}
return create_random_column(
cudf::type_to_id<Type>(), row_count{num_rows}, data_profile{builder});
}();

// Vector of 1 request
std::vector<cudf::groupby::aggregation_request> requests(1);
requests.back().values = values->view();
requests.back().aggregations.push_back(
cudf::make_histogram_aggregation<cudf::groupby_aggregation>());

auto const mem_stats_logger = cudf::memory_stats_logger();
state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value()));
state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) {
auto gb_obj = cudf::groupby::groupby(cudf::table_view({keys->view()}));
auto const result = gb_obj.aggregate(requests);
});

auto const elapsed_time = state.get_summary("nv/cold/time/gpu/mean").get_float64("value");
state.add_element_count(static_cast<double>(num_rows) / elapsed_time, "rows/s");
state.add_buffer_size(
mem_stats_logger.peak_memory_usage(), "peak_memory_usage", "peak_memory_usage");
}

template <typename Type>
void bench_groupby_histogram(nvbench::state& state, nvbench::type_list<Type>)
{
auto const cardinality = static_cast<cudf::size_type>(state.get_int64("cardinality"));
auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows"));
auto const null_probability = state.get_float64("null_probability");

if (cardinality > num_rows) {
state.skip("cardinality > num_rows");
return;
}

groupby_histogram_helper<Type>(state, num_rows, cardinality, null_probability);
}

NVBENCH_BENCH_TYPES(bench_groupby_histogram,
NVBENCH_TYPE_AXES(nvbench::type_list<int32_t, int64_t, float, double>))
.set_name("groupby_histogram")
.add_float64_axis("null_probability", {0, 0.1, 0.9})
.add_int64_axis("cardinality", {100, 1'000, 10'000, 100'000, 1'000'000, 10'000'000})
.add_int64_axis("num_rows", {100, 1'000, 10'000, 100'000, 1'000'000, 10'000'000});
68 changes: 68 additions & 0 deletions cpp/benchmarks/reduction/histogram.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include "cudf/aggregation.hpp"
#include "cudf/detail/aggregation/aggregation.hpp"

#include <benchmarks/common/generate_input.hpp>
#include <benchmarks/common/nvbench_utilities.hpp>
#include <benchmarks/common/table_utilities.hpp>

#include <cudf/column/column_view.hpp>
#include <cudf/detail/aggregation/aggregation.hpp>
#include <cudf/reduction.hpp>
#include <cudf/reduction/detail/histogram.hpp>
#include <cudf/types.hpp>

#include <nvbench/nvbench.cuh>

template <typename type>
static void nvbench_reduction_histogram(nvbench::state& state, nvbench::type_list<type>)
{
auto const dtype = cudf::type_to_id<type>();

auto const cardinality = static_cast<cudf::size_type>(state.get_int64("cardinality"));
auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows"));
auto const null_probability = state.get_float64("null_probability");

if (cardinality > num_rows) {
state.skip("cardinality > num_rows");
return;
}

data_profile const profile = data_profile_builder()
.null_probability(null_probability)
.cardinality(cardinality)
.distribution(dtype, distribution_id::UNIFORM, 0, num_rows);

auto const input = create_random_column(dtype, row_count{num_rows}, profile);
auto agg = cudf::make_histogram_aggregation<cudf::reduce_aggregation>();
state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) {
rmm::cuda_stream_view stream_view{launch.get_stream()};
auto result = cudf::reduce(*input, *agg, input->type(), stream_view);
});

state.add_element_count(input->size());
}

using data_type = nvbench::type_list<int32_t, int64_t>;

NVBENCH_BENCH_TYPES(nvbench_reduction_histogram, NVBENCH_TYPE_AXES(data_type))
.set_name("histogram")
.add_float64_axis("null_probability", {0.1})
.add_int64_axis("cardinality",
{0, 100, 1'000, 10'000, 100'000, 1'000'000, 10'000'000, 50'000'000})
.add_int64_axis("num_rows", {10'000, 100'000, 1'000'000, 10'000'000, 100'000'000});
169 changes: 0 additions & 169 deletions cpp/include/cudf/detail/hash_reduce_by_row.cuh

This file was deleted.

8 changes: 4 additions & 4 deletions cpp/src/io/parquet/compact_protocol_reader.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -309,10 +309,10 @@ class parquet_field_struct : public parquet_field {
template <typename E, typename T>
class parquet_field_union_struct : public parquet_field {
E& enum_val;
cuda::std::optional<T>& val; // union structs are always wrapped in std::optional
std::optional<T>& val; // union structs are always wrapped in std::optional

public:
parquet_field_union_struct(int f, E& ev, cuda::std::optional<T>& v)
parquet_field_union_struct(int f, E& ev, std::optional<T>& v)
: parquet_field(f), enum_val(ev), val(v)
{
}
Expand Down Expand Up @@ -439,10 +439,10 @@ class parquet_field_struct_blob : public parquet_field {
*/
template <typename T, typename FieldFunctor>
class parquet_field_optional : public parquet_field {
cuda::std::optional<T>& val;
std::optional<T>& val;

public:
parquet_field_optional(int f, cuda::std::optional<T>& v) : parquet_field(f), val(v) {}
parquet_field_optional(int f, std::optional<T>& v) : parquet_field(f), val(v) {}

inline void operator()(CompactProtocolReader* cpr, int field_type)
{
Expand Down
Loading

0 comments on commit edfaa92

Please sign in to comment.