Skip to content

Commit

Permalink
Merge branch 'branch-24.06' into ref/colacc/from_data_like_self
Browse files Browse the repository at this point in the history
  • Loading branch information
galipremsagar authored Apr 1, 2024
2 parents a80e593 + e5f9e2d commit cdec330
Show file tree
Hide file tree
Showing 27 changed files with 1,305 additions and 92 deletions.
8 changes: 8 additions & 0 deletions ci/test_python_cudf.sh
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,14 @@ EXITCODE=0
trap "EXITCODE=1" ERR
set +e

rapids-logger "pytest pylibcudf"
pushd python/cudf/cudf/pylibcudf_tests
python -m pytest \
--cache-clear \
--dist=worksteal \
.
popd

rapids-logger "pytest cudf"
./ci/run_cudf_pytests.sh \
--junitxml="${RAPIDS_TESTS_DIR}/junit-cudf.xml" \
Expand Down
8 changes: 8 additions & 0 deletions ci/test_wheel_cudf.sh
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,14 @@ if [[ "$(arch)" == "aarch64" && ${RAPIDS_BUILD_TYPE} == "pull-request" ]]; then
rapids-logger "Run smoke tests for cudf"
python ./ci/wheel_smoke_test_cudf.py
else
rapids-logger "pytest pylibcudf"
pushd python/cudf/cudf/pylibcudf_tests
python -m pytest \
--cache-clear \
--dist=worksteal \
.
popd

rapids-logger "pytest cudf"
pushd python/cudf/cudf/tests
python -m pytest \
Expand Down
3 changes: 3 additions & 0 deletions cpp/include/cudf/copying.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -253,6 +253,8 @@ std::unique_ptr<column> empty_like(scalar const& input);
* If the `mask_alloc` allocates a validity mask that mask is also uninitialized
* and the validity bits and the null count should be set by the caller.
*
* @throws cudf::data_type_error if input type is not of fixed width.
*
* @param input Immutable view of input column to emulate
* @param mask_alloc Optional, Policy for allocating null mask. Defaults to RETAIN
* @param mr Device memory resource used to allocate the returned column's device memory
Expand Down Expand Up @@ -360,6 +362,7 @@ void copy_range_in_place(column_view const& source,
*
* @throws std::out_of_range for any invalid range.
* @throws cudf::data_type_error if @p target and @p source have different types.
* @throws cudf::data_type_error if the data type is not fixed width, string, or dictionary
*
* @param source The column to copy from inside the range
* @param target The column to copy from outside the range
Expand Down
57 changes: 36 additions & 21 deletions cpp/include/cudf_test/testing_main.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -145,6 +145,32 @@ inline auto parse_cudf_test_opts(int argc, char** argv)
}
}

/**
* @brief Sets up stream mode memory resource adaptor
*
* The resource adaptor is only set as the current device resource if the
* stream mode is enabled.
*
* The caller must keep the return object alive for the life of the test runs.
*
* @param cmd_opts Command line options returned by parse_cudf_test_opts
* @return Memory resource adaptor
*/
inline auto make_stream_mode_adaptor(cxxopts::ParseResult const& cmd_opts)
{
auto resource = rmm::mr::get_current_device_resource();
auto const stream_mode = cmd_opts["stream_mode"].as<std::string>();
auto const stream_error_mode = cmd_opts["stream_error_mode"].as<std::string>();
auto const error_on_invalid_stream = (stream_error_mode == "error");
auto const check_default_stream = (stream_mode == "new_cudf_default");
auto adaptor =
make_stream_checking_resource_adaptor(resource, error_on_invalid_stream, check_default_stream);
if ((stream_mode == "new_cudf_default") || (stream_mode == "new_testing_default")) {
rmm::mr::set_current_device_resource(&adaptor);
}
return adaptor;
}

/**
* @brief Macro that defines main function for gtest programs that use rmm
*
Expand All @@ -155,25 +181,14 @@ inline auto parse_cudf_test_opts(int argc, char** argv)
* function parses the command line to customize test behavior, like the
* allocation mode used for creating the default memory resource.
*/
#define CUDF_TEST_PROGRAM_MAIN() \
int main(int argc, char** argv) \
{ \
::testing::InitGoogleTest(&argc, argv); \
auto const cmd_opts = parse_cudf_test_opts(argc, argv); \
auto const rmm_mode = cmd_opts["rmm_mode"].as<std::string>(); \
auto resource = cudf::test::create_memory_resource(rmm_mode); \
rmm::mr::set_current_device_resource(resource.get()); \
\
auto const stream_mode = cmd_opts["stream_mode"].as<std::string>(); \
if ((stream_mode == "new_cudf_default") || (stream_mode == "new_testing_default")) { \
auto const stream_error_mode = cmd_opts["stream_error_mode"].as<std::string>(); \
auto const error_on_invalid_stream = (stream_error_mode == "error"); \
auto const check_default_stream = (stream_mode == "new_cudf_default"); \
auto adaptor = make_stream_checking_resource_adaptor( \
resource.get(), error_on_invalid_stream, check_default_stream); \
rmm::mr::set_current_device_resource(&adaptor); \
return RUN_ALL_TESTS(); \
} \
\
return RUN_ALL_TESTS(); \
#define CUDF_TEST_PROGRAM_MAIN() \
int main(int argc, char** argv) \
{ \
::testing::InitGoogleTest(&argc, argv); \
auto const cmd_opts = parse_cudf_test_opts(argc, argv); \
auto const rmm_mode = cmd_opts["rmm_mode"].as<std::string>(); \
auto resource = cudf::test::create_memory_resource(rmm_mode); \
rmm::mr::set_current_device_resource(resource.get()); \
auto adaptor = make_stream_mode_adaptor(cmd_opts); \
return RUN_ALL_TESTS(); \
}
5 changes: 3 additions & 2 deletions cpp/src/copying/copy.cpp
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
* Copyright (c) 2019-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand Down Expand Up @@ -122,7 +122,8 @@ std::unique_ptr<column> allocate_like(column_view const& input,
rmm::mr::device_memory_resource* mr)
{
CUDF_FUNC_RANGE();
CUDF_EXPECTS(is_fixed_width(input.type()), "Expects only fixed-width type column");
CUDF_EXPECTS(
is_fixed_width(input.type()), "Expects only fixed-width type column", cudf::data_type_error);
mask_state allocate_mask = should_allocate_mask(mask_alloc, input.nullable());

return std::make_unique<column>(input.type(),
Expand Down
2 changes: 1 addition & 1 deletion cpp/src/copying/copy_range.cu
Original file line number Diff line number Diff line change
Expand Up @@ -119,7 +119,7 @@ struct out_of_place_copy_range_dispatch {
std::enable_if_t<not cudf::is_rep_layout_compatible<T>(), std::unique_ptr<cudf::column>>
operator()(Args...)
{
CUDF_FAIL("Unsupported type for out of place copy.");
CUDF_FAIL("Unsupported type for out of place copy.", cudf::data_type_error);
}
};

Expand Down
11 changes: 10 additions & 1 deletion cpp/src/copying/scatter.cu
Original file line number Diff line number Diff line change
Expand Up @@ -144,7 +144,9 @@ struct column_scalar_scatterer_impl<string_view, MapIterator> {
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr) const
{
CUDF_EXPECTS(source.get().type() == target.type(), "scalar and column types must match");
CUDF_EXPECTS(source.get().type() == target.type(),
"scalar and column types must match",
cudf::data_type_error);

auto const scalar_impl = static_cast<string_scalar const*>(&source.get());
auto const source_view = string_view(scalar_impl->data(), scalar_impl->size());
Expand All @@ -166,6 +168,9 @@ struct column_scalar_scatterer_impl<list_view, MapIterator> {
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr) const
{
CUDF_EXPECTS(source.get().type() == target.type(),
"scalar and column types must match",
cudf::data_type_error);
auto result =
lists::detail::scatter(source, scatter_iter, scatter_iter + scatter_rows, target, stream, mr);

Expand Down Expand Up @@ -249,6 +254,10 @@ struct column_scalar_scatterer_impl<struct_view, MapIterator> {
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr) const
{
CUDF_EXPECTS(source.get().type() == target.type(),
"scalar and column types must match",
cudf::data_type_error);

// For each field of `source`, copy construct a scalar from the field
// and dispatch to the corresponding scalar scatterer

Expand Down
1 change: 1 addition & 0 deletions cpp/src/io/utilities/data_sink.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@ class file_sink : public data_sink {
public:
explicit file_sink(std::string const& filepath)
{
detail::force_init_cuda_context();
_output_stream.open(filepath, std::ios::out | std::ios::binary | std::ios::trunc);
if (!_output_stream.is_open()) { detail::throw_on_file_open_failure(filepath, true); }

Expand Down
6 changes: 1 addition & 5 deletions cpp/src/io/utilities/datasource.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -43,12 +43,8 @@ class file_source : public datasource {
public:
explicit file_source(char const* filepath) : _file(filepath, O_RDONLY)
{
detail::force_init_cuda_context();
if (detail::cufile_integration::is_kvikio_enabled()) {
// Workaround for https://github.com/rapidsai/cudf/issues/14140, where cuFileDriverOpen errors
// out if no CUDA calls have been made before it. This is a no-op if the CUDA context is
// already initialized
cudaFree(0);

_kvikio_file = kvikio::FileHandle(filepath);
CUDF_LOG_INFO("Reading a file using kvikIO, with compatibility mode {}.",
_kvikio_file.is_compat_mode_on() ? "on" : "off");
Expand Down
8 changes: 8 additions & 0 deletions cpp/src/io/utilities/file_io_utilities.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,14 @@ namespace cudf {
namespace io {
namespace detail {

void force_init_cuda_context()
{
// Workaround for https://github.com/rapidsai/cudf/issues/14140, where cuFileDriverOpen errors
// out if no CUDA calls have been made before it. This is a no-op if the CUDA context is already
// initialized.
cudaFree(0);
}

[[noreturn]] void throw_on_file_open_failure(std::string const& filepath, bool is_create)
{
// save errno because it may be overwritten by subsequent calls
Expand Down
3 changes: 3 additions & 0 deletions cpp/src/io/utilities/file_io_utilities.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,9 @@ namespace detail {

[[noreturn]] void throw_on_file_open_failure(std::string const& filepath, bool is_create);

// Call before any cuFile API calls to ensure the CUDA context is initialized.
void force_init_cuda_context();

/**
* @brief Class that provides RAII for file handling.
*/
Expand Down
14 changes: 2 additions & 12 deletions cpp/tests/error/error_handling_test.cu
Original file line number Diff line number Diff line change
Expand Up @@ -128,17 +128,7 @@ TEST(DebugAssert, cudf_assert_true)
int main(int argc, char** argv)
{
::testing::InitGoogleTest(&argc, argv);
auto const cmd_opts = parse_cudf_test_opts(argc, argv);
auto const stream_mode = cmd_opts["stream_mode"].as<std::string>();
if ((stream_mode == "new_cudf_default") || (stream_mode == "new_testing_default")) {
auto resource = rmm::mr::get_current_device_resource();
auto const stream_error_mode = cmd_opts["stream_error_mode"].as<std::string>();
auto const error_on_invalid_stream = (stream_error_mode == "error");
auto const check_default_stream = (stream_mode == "new_cudf_default");
auto adaptor = make_stream_checking_resource_adaptor(
resource, error_on_invalid_stream, check_default_stream);
rmm::mr::set_current_device_resource(&adaptor);
return RUN_ALL_TESTS();
}
auto const cmd_opts = parse_cudf_test_opts(argc, argv);
auto adaptor = make_stream_mode_adaptor(cmd_opts);
return RUN_ALL_TESTS();
}
66 changes: 66 additions & 0 deletions docs/cudf/source/developer_guide/pylibcudf.md
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,72 @@ There are a couple of notable points from the snippet above:
- The object returned from libcudf is immediately converted to a pylibcudf type.
- `cudf::gather` accepts a `cudf::out_of_bounds_policy` enum parameter. `OutOfBoundsPolicy` is an alias for this type in pylibcudf that matches our Python naming conventions (CapsCase instead of snake\_case).

## Testing

When writing pylibcudf tests, it is important to remember that all the APIs should be tested in the C++ layer in libcudf already.
The primary purpose of pylibcudf tests is to ensure the correctness of the _bindings_; the correctness of the underlying implementation should generally be validated in libcudf.
If pylibcudf tests uncover a libcudf bug, a suitable libcudf test should be added to cover this case rather than relying solely on pylibcudf testing.

pylibcudf's ``conftest.py`` contains some standard parametrized dtype fixture lists that may in turn be used to parametrize other fixtures.
Fixtures allocating data should leverage these dtype lists wherever possible to simplify testing across the matrix of important types.
Where appropriate, new fixture lists may be added.

To run tests as efficiently as possible, the test suite should make generous use of fixtures.
The simplest general structure to follow is for pyarrow array/table/scalar fixtures to be parametrized by one of the dtype list.
Then, a corresponding pylibcudf fixture may be created using a simple `from_arrow` call.
This approach ensures consistent global coverage across types for various tests.

In general, pylibcudf tests should prefer validating against a corresponding pyarrow implementation rather than hardcoding data.
This approach is more resilient to changes to input data, particularly given the fixture strategy outlined above.
Standard tools for comparing between pylibcudf and pyarrow types are provided in the utils module.

Here is an example demonstrating the above points:

```python
import pyarrow as pa
import pyarrow.compute as pc
import pytest
from cudf._lib import pylibcudf as plc
from utils import assert_column_eq

# The pa_dtype fixture is defined in conftest.py.
@pytest.fixture(scope="module")
def pa_column(pa_dtype):
pa.array([1, 2, 3])


@pytest.fixture(scope="module")
def column(pa_column):
return plc.interop.from_arrow(pa_column)


def test_foo(pa_column, column):
index = 1
result = plc.foo(column)
expected = pa.foo(pa_column)

assert_column_eq(result, expected)
```

Some guidelines on what should be tested:
- Tests SHOULD comprehensively cover the API, including all possible combinations of arguments required to ensure good test coverage.
- pylibcudf SHOULD NOT attempt to stress test large data sizes, and SHOULD instead defer to libcudf tests.
- Exception: In special cases where constructing suitable large tests is difficult in C++ (such as creating suitable input data for I/O testing), tests may be added to pylibcudf instead.
- Nullable data should always be tested.
- Expected exceptions should be tested. Tests should be written from the user's perspective in mind, and if the API is not currently throwing the appropriate exception it should be updated.
- Important note: If the exception should be produced by libcudf, the underlying libcudf API should be updated to throw the desired exception in C++. Such changes may require consultation with libcudf devs in nontrivial cases. [This issue](https://github.com/rapidsai/cudf/issues/12885) provides an overview and an indication of acceptable exception types that should cover most use cases. In rare cases a new C++ exception may need to be introduced in [`error.hpp`](https://github.com/rapidsai/cudf/blob/branch-24.04/cpp/include/cudf/utilities/error.hpp). If so, this exception will also need to be mapped to a suitable Python exception in [`exception_handler.pxd`](https://github.com/rapidsai/cudf/blob/branch-24.04/python/cudf/cudf/_lib/exception_handler.pxd).

Some guidelines on how best to use pytests.
- By default, fixtures producing device data containers should be of module scope and treated as immutable by tests. Allocating data on the GPU is expensive and slows tests. Almost all pylibcudf operations are out of place operations, so module-scoped fixtures should not typically be problematic to work with. Session-scoped fixtures would also work, but they are harder to reason about since they live in a different module, and if they need to change for any reason they could affect an arbitrarily large number of tests. Module scope is a good balance.
- Where necessary, mutable fixtures should be named as such (e.g. `mutable_col`) and be of function scope. If possible, they can be implemented as simply making a copy of a corresponding module-scope immutable fixture to avoid duplicating the generation logic.

Tests should be organized corresponding to pylibcudf modules, i.e. one test module for each pylibcudf module.

The following sections of the cuDF Python testing guide also generally apply to pylibcudf unless superseded by any statements above:
- [](#test_parametrization)
- [](#xfailing_tests)
- [](#testing_warnings)

## Miscellaneous Notes

### Cython Scoped Enums
Expand Down
6 changes: 6 additions & 0 deletions docs/cudf/source/developer_guide/testing.md
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,8 @@ Typically, exception cases require specific assertions or other special logic, s
The main exception to this rule is tests based on comparison to pandas.
Such tests may test exceptional cases alongside more typical cases since the logic is generally identical.

(test_parametrization)=

### Parametrization: custom fixtures and `pytest.mark.parametrize`

When it comes to parametrizing tests written with `pytest`,
Expand Down Expand Up @@ -140,6 +142,8 @@ def test_odds():

Other approaches are also possible, and the best solution should be discussed on a case-by-case basis during PR review.

(xfailing_tests)=

### Tests with expected failures (`xfail`s)

In some circumstances it makes sense to mark a test as _expected_ to
Expand Down Expand Up @@ -218,6 +222,8 @@ This way, when the bug is fixed, the test suite will fail at this
point (and we will remember to update the test).


(testing_warnings)=

### Testing code that throws warnings

Some code may be expected to throw warnings.
Expand Down
Loading

0 comments on commit cdec330

Please sign in to comment.