Skip to content

Commit

Permalink
Switched AST benchmarks from GoogleBench to NVBench (#16952)
Browse files Browse the repository at this point in the history
This merge request switches the Benchmarking solution for the AST benchmark from GoogleBench to NVBench. ~It also refactors the L2 cache flushing functionality of `cuda_event_timer` into a separate function `flush_L2_device_cache`, since NVBench already performs the timing, synchronization, and timer setup necessary.~

Authors:
  - Basit Ayantunde (https://github.com/lamarrr)

Approvers:
  - Bradley Dice (https://github.com/bdice)
  - Yunsong Wang (https://github.com/PointKernel)
  - Nghia Truong (https://github.com/ttnghia)

URL: #16952
  • Loading branch information
lamarrr authored Oct 4, 2024
1 parent 0108391 commit 2fa2e6a
Show file tree
Hide file tree
Showing 2 changed files with 18 additions and 35 deletions.
2 changes: 1 addition & 1 deletion cpp/benchmarks/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -330,7 +330,7 @@ ConfigureNVBench(CSV_WRITER_NVBENCH io/csv/csv_writer.cpp)

# ##################################################################################################
# * ast benchmark ---------------------------------------------------------------------------------
ConfigureBench(AST_BENCH ast/transform.cpp)
ConfigureNVBench(AST_NVBENCH ast/transform.cpp)

# ##################################################################################################
# * binaryop benchmark ----------------------------------------------------------------------------
Expand Down
51 changes: 17 additions & 34 deletions cpp/benchmarks/ast/transform.cpp
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
* Copyright (c) 2020-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand All @@ -15,14 +15,16 @@
*/

#include <benchmarks/common/generate_input.hpp>
#include <benchmarks/fixture/benchmark_fixture.hpp>
#include <benchmarks/synchronization/synchronization.hpp>

#include <cudf/transform.hpp>
#include <cudf/types.hpp>

#include <rmm/cuda_stream_view.hpp>

#include <thrust/iterator/counting_iterator.h>

#include <nvbench/nvbench.cuh>

#include <algorithm>
#include <list>
#include <memory>
Expand All @@ -35,13 +37,10 @@ enum class TreeType {
};

template <typename key_type, TreeType tree_type, bool reuse_columns, bool Nullable>
class AST : public cudf::benchmark {};

template <typename key_type, TreeType tree_type, bool reuse_columns, bool Nullable>
static void BM_ast_transform(benchmark::State& state)
static void BM_ast_transform(nvbench::state& state)
{
auto const table_size{static_cast<cudf::size_type>(state.range(0))};
auto const tree_levels{static_cast<cudf::size_type>(state.range(1))};
auto const table_size = static_cast<cudf::size_type>(state.get_int64("table_size"));
auto const tree_levels = static_cast<cudf::size_type>(state.get_int64("tree_levels"));

// Create table data
auto const n_cols = reuse_columns ? 1 : tree_levels + 1;
Expand Down Expand Up @@ -86,38 +85,22 @@ static void BM_ast_transform(benchmark::State& state)

auto const& expression_tree_root = expressions.back();

// Execute benchmark
for (auto _ : state) {
cuda_event_timer raii(state, true); // flush_l2_cache = true, stream = 0
cudf::compute_column(table, expression_tree_root);
}

// Use the number of bytes read from global memory
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * state.range(0) *
(tree_levels + 1) * sizeof(key_type));
}
state.add_global_memory_reads<key_type>(table_size * (tree_levels + 1));

static void CustomRanges(benchmark::internal::Benchmark* b)
{
auto row_counts = std::vector<cudf::size_type>{100'000, 1'000'000, 10'000'000, 100'000'000};
auto operation_counts = std::vector<cudf::size_type>{1, 5, 10};
for (auto const& row_count : row_counts) {
for (auto const& operation_count : operation_counts) {
b->Args({row_count, operation_count});
}
}
state.exec(nvbench::exec_tag::sync,
[&](nvbench::launch&) { cudf::compute_column(table, expression_tree_root); });
}

#define AST_TRANSFORM_BENCHMARK_DEFINE(name, key_type, tree_type, reuse_columns, nullable) \
BENCHMARK_TEMPLATE_DEFINE_F(AST, name, key_type, tree_type, reuse_columns, nullable) \
(::benchmark::State & st) \
static void name(::nvbench::state& st) \
{ \
BM_ast_transform<key_type, tree_type, reuse_columns, nullable>(st); \
::BM_ast_transform<key_type, tree_type, reuse_columns, nullable>(st); \
} \
BENCHMARK_REGISTER_F(AST, name) \
->Apply(CustomRanges) \
->Unit(benchmark::kMillisecond) \
->UseManualTime();
NVBENCH_BENCH(name) \
.set_name(#name) \
.add_int64_axis("tree_levels", {1, 5, 10}) \
.add_int64_axis("table_size", {100'000, 1'000'000, 10'000'000, 100'000'000})

AST_TRANSFORM_BENCHMARK_DEFINE(
ast_int32_imbalanced_unique, int32_t, TreeType::IMBALANCED_LEFT, false, false);
Expand Down

0 comments on commit 2fa2e6a

Please sign in to comment.