-
Notifications
You must be signed in to change notification settings - Fork 912
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add
catboost
to the third-party integration tests (#17267)
Closes #15397 Authors: - Matthew Murray (https://github.com/Matt711) Approvers: - GALI PREM SAGAR (https://github.com/galipremsagar) - Matthew Roeschke (https://github.com/mroeschke) URL: #17267
- Loading branch information
Showing
2 changed files
with
144 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
129 changes: 129 additions & 0 deletions
129
python/cudf/cudf_pandas_tests/third_party_integration_tests/tests/test_catboost.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
# Copyright (c) 2024, NVIDIA CORPORATION. | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import pytest | ||
from catboost import CatBoostClassifier, CatBoostRegressor, Pool | ||
from sklearn.datasets import make_classification, make_regression | ||
|
||
rng = np.random.default_rng(seed=42) | ||
|
||
|
||
def assert_catboost_equal(expect, got, rtol=1e-7, atol=0.0): | ||
if isinstance(expect, (tuple, list)): | ||
assert len(expect) == len(got) | ||
for e, g in zip(expect, got): | ||
assert_catboost_equal(e, g, rtol, atol) | ||
elif isinstance(expect, np.ndarray): | ||
np.testing.assert_allclose(expect, got, rtol=rtol, atol=atol) | ||
elif isinstance(expect, pd.DataFrame): | ||
pd.testing.assert_frame_equal(expect, got) | ||
elif isinstance(expect, pd.Series): | ||
pd.testing.assert_series_equal(expect, got) | ||
else: | ||
assert expect == got | ||
|
||
|
||
pytestmark = pytest.mark.assert_eq(fn=assert_catboost_equal) | ||
|
||
|
||
@pytest.fixture | ||
def regression_data(): | ||
X, y = make_regression(n_samples=100, n_features=10, random_state=42) | ||
return pd.DataFrame(X), pd.Series(y) | ||
|
||
|
||
@pytest.fixture | ||
def classification_data(): | ||
X, y = make_classification( | ||
n_samples=100, n_features=10, n_classes=2, random_state=42 | ||
) | ||
return pd.DataFrame(X), pd.Series(y) | ||
|
||
|
||
def test_catboost_regressor_with_dataframe(regression_data): | ||
X, y = regression_data | ||
model = CatBoostRegressor(iterations=10, verbose=0) | ||
model.fit(X, y) | ||
predictions = model.predict(X) | ||
return predictions | ||
|
||
|
||
def test_catboost_regressor_with_numpy(regression_data): | ||
X, y = regression_data | ||
model = CatBoostRegressor(iterations=10, verbose=0) | ||
model.fit(X.values, y.values) | ||
predictions = model.predict(X.values) | ||
return predictions | ||
|
||
|
||
def test_catboost_classifier_with_dataframe(classification_data): | ||
X, y = classification_data | ||
model = CatBoostClassifier(iterations=10, verbose=0) | ||
model.fit(X, y) | ||
predictions = model.predict(X) | ||
return predictions | ||
|
||
|
||
def test_catboost_classifier_with_numpy(classification_data): | ||
X, y = classification_data | ||
model = CatBoostClassifier(iterations=10, verbose=0) | ||
model.fit(X.values, y.values) | ||
predictions = model.predict(X.values) | ||
return predictions | ||
|
||
|
||
def test_catboost_with_pool_and_dataframe(regression_data): | ||
X, y = regression_data | ||
train_pool = Pool(X, y) | ||
model = CatBoostRegressor(iterations=10, verbose=0) | ||
model.fit(train_pool) | ||
predictions = model.predict(X) | ||
return predictions | ||
|
||
|
||
def test_catboost_with_pool_and_numpy(regression_data): | ||
X, y = regression_data | ||
train_pool = Pool(X.values, y.values) | ||
model = CatBoostRegressor(iterations=10, verbose=0) | ||
model.fit(train_pool) | ||
predictions = model.predict(X.values) | ||
return predictions | ||
|
||
|
||
def test_catboost_with_categorical_features(): | ||
data = { | ||
"numerical_feature": rng.standard_normal(100), | ||
"categorical_feature": rng.choice(["A", "B", "C"], size=100), | ||
"target": rng.integers(0, 2, size=100), | ||
} | ||
df = pd.DataFrame(data) | ||
X = df[["numerical_feature", "categorical_feature"]] | ||
y = df["target"] | ||
cat_features = ["categorical_feature"] | ||
model = CatBoostClassifier( | ||
iterations=10, verbose=0, cat_features=cat_features | ||
) | ||
model.fit(X, y) | ||
predictions = model.predict(X) | ||
return predictions | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"X, y", | ||
[ | ||
( | ||
pd.DataFrame(rng.standard_normal((100, 5))), | ||
pd.Series(rng.standard_normal(100)), | ||
), | ||
(rng.standard_normal((100, 5)), rng.standard_normal(100)), | ||
], | ||
) | ||
def test_catboost_train_test_split(X, y): | ||
from sklearn.model_selection import train_test_split | ||
|
||
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) | ||
model = CatBoostRegressor(iterations=10, verbose=0) | ||
model.fit(X_train, y_train) | ||
predictions = model.predict(X_test) | ||
return len(X_train), len(X_test), len(y_train), len(y_test), predictions |