Skip to content

Commit

Permalink
Merge pull request #1931 from ranaroussi/feature/improve-price-repair…
Browse files Browse the repository at this point in the history
…-bad-splits

 Price repair: improve 'sudden change' repair for splits & currency
  • Loading branch information
ValueRaider authored May 19, 2024
2 parents 7c41434 + 97f35b7 commit da1c466
Showing 1 changed file with 35 additions and 19 deletions.
54 changes: 35 additions & 19 deletions yfinance/scrapers/history.py
Original file line number Diff line number Diff line change
Expand Up @@ -338,7 +338,7 @@ def history(self, period="1mo", interval="1d",
# Do this before auto/back adjust
logger.debug(f'{self.ticker}: checking OHLC for repairs ...')
df = self._fix_unit_mixups(df, interval, tz_exchange, prepost)
df = self._fix_bad_stock_split(df, interval, tz_exchange)
df = self._fix_bad_stock_splits(df, interval, tz_exchange)
# Must repair 100x and split errors before price reconstruction
df = self._fix_zeroes(df, interval, tz_exchange, prepost)
df = self._fix_missing_div_adjust(df, interval, tz_exchange)
Expand Down Expand Up @@ -981,7 +981,12 @@ def _fix_unit_switch(self, df, interval, tz_exchange):
# This function fixes the second.
# Eventually Yahoo fixes but could take them 2 weeks.

return self._fix_prices_sudden_change(df, interval, tz_exchange, 100.0)
if self._history_metadata['currency'] == 'KWF':
# Kuwaiti Dinar divided into 1000 not 100
n = 1000
else:
n = 100
return self._fix_prices_sudden_change(df, interval, tz_exchange, n)

@utils.log_indent_decorator
def _fix_zeroes(self, df, interval, tz_exchange, prepost):
Expand Down Expand Up @@ -1171,9 +1176,12 @@ def _fix_missing_div_adjust(self, df, interval, tz_exchange):
return df2

@utils.log_indent_decorator
def _fix_bad_stock_split(self, df, interval, tz_exchange):
# Repair idea is to look for BIG daily price changes that closely match the
# most recent stock split ratio. This indicates Yahoo failed to apply a new
def _fix_bad_stock_splits(self, df, interval, tz_exchange):
# Original logic only considered latest split adjustment could be missing, but
# actually **any** split adjustment can be missing. So check all splits in df.
#
# Improved logic looks for BIG daily price changes that closely match the
# **nearest future** stock split ratio. This indicates Yahoo failed to apply a new
# stock split to old price data.
#
# There is a slight complication, because Yahoo does another stupid thing.
Expand All @@ -1190,22 +1198,28 @@ def _fix_bad_stock_split(self, df, interval, tz_exchange):
if not interday:
return df

# Find the most recent stock split
df = df.sort_index(ascending=False)
df = df.sort_index() # scan splits oldest -> newest
split_f = df['Stock Splits'].to_numpy() != 0
if not split_f.any():
logger.debug('price-repair-split: No splits in data')
return df
most_recent_split_day = df.index[split_f].max()
split = df.loc[most_recent_split_day, 'Stock Splits']
if most_recent_split_day == df.index[0]:
logger.info(
"price-repair-split: Need 1+ day of price data after split to determine true price. Won't repair")
return df

logger.debug(f'price-repair-split: Most recent split = {split:.4f} @ {most_recent_split_day.date()}')
for split_idx in np.where(split_f)[0]:
split_dt = df.index[split_idx]
split = df.loc[split_dt, 'Stock Splits']
if split_dt == df.index[0]:
continue

return self._fix_prices_sudden_change(df, interval, tz_exchange, split, correct_volume=True)
cutoff_idx = min(df.shape[0], split_idx+1) # add one row after to detect big change
df_pre_split = df.iloc[0:cutoff_idx+1]

df_pre_split_repaired = self._fix_prices_sudden_change(df_pre_split, interval, tz_exchange, split, correct_volume=True)
# Merge back in:
if cutoff_idx == df.shape[0]-1:
df = df_pre_split_repaired
else:
df = pd.concat([df_pre_split_repaired.sort_index(), df.iloc[cutoff_idx+1:]])
return df

@utils.log_indent_decorator
def _fix_prices_sudden_change(self, df, interval, tz_exchange, change, correct_volume=False):
Expand Down Expand Up @@ -1302,10 +1316,12 @@ def _fix_prices_sudden_change(self, df, interval, tz_exchange, change, correct_v
# average change
_1d_change_minx = np.average(_1d_change_x, axis=1)
else:
# change nearest to 1.0
diff = np.abs(_1d_change_x - 1.0)
j_indices = np.argmin(diff, axis=1)
_1d_change_minx = _1d_change_x[np.arange(n), j_indices]
# # change nearest to 1.0
# diff = np.abs(_1d_change_x - 1.0)
# j_indices = np.argmin(diff, axis=1)
# _1d_change_minx = _1d_change_x[np.arange(n), j_indices]
# Still sensitive to extreme-low low. Try median:
_1d_change_minx = np.median(_1d_change_x, axis=1)
f_na = np.isnan(_1d_change_minx)
if f_na.any():
# Possible if data was too old for reconstruction.
Expand Down

0 comments on commit da1c466

Please sign in to comment.