-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcreateIntermediateImages.m
384 lines (345 loc) · 15.5 KB
/
createIntermediateImages.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
%version-2/9/17
%create intermediate images. Can be called by both GUI and batch mode
function [rgb,cluster] = createIntermediateImages(state,nip)
%Output:
%rgb = processed image
%cluster = an indicator shows whether any cluster has been identified
%iniitally, assume there is at least one cluster in an image;
cluster = '';
%stateNum = state number in NIPState
% nip=NeuronImageProcessor;
rgb = [];
nipState = nip.getState();
if state > nipState
error('[createIntermediateImages]: The desired state %s is greater than the image processor state %s.', char(state), char(nipState))
end
switch(state)
case NIPState.ReadImages
rgb = nip.getNucleusImage();
case NIPState.SegmentedNucleusImageOnce
I=nip.getFirstNucleusMask();
J=nip.getNucleusImage();
rgb = addBorder(J, I, [0, 0, 1]);
case NIPState.SegmentedNucleusImageTwice
I=nip.getSecondNucleusMask();
J=nip.getNucleusImage();
rgb = addBorder(J, I, [0, 0, 1]);
case NIPState.OpenedNucleusMask
I=nip.getOpenedNucleusMask;
J=nip.getNucleusImage();
rgb = addBorder(J, I, [0, 0, 1]);
case NIPState.IdentifiedNucleusClusters
ndA = nip.getNucleusData(); %The property names are shown on the control panel. Need to solve this problem
L = nip.getNucleusAllLabeled(); %labeled nucleus image matrix
Cluster=false(size(L));
Single = false(size(L));
for i = 1:numel(ndA)
if ndA(i).cluster
Cluster = L==i | Cluster;
else
Single = L==i | Single;
end
end
J=nip.getNucleusImage();
rgb = addBorder(J, Cluster, [0, 1, 1]);
rgb = addBorder(rgb, Single, [0, 0, 1]);
case NIPState.CalculatedNominalMeanNucleusArea
ndA = nip.getNucleusData();
J=nip.getNucleusImage();
N = zeros(1, length(ndA)); %neuron count of each cluster
P = zeros(2, length(ndA)); %position of each cluster
for i = 1:numel(ndA)
if ndA(i).cluster
N(i) = ndA(i).numNuclei;
center = ndA(i).centroid;
P(1,i) = center(2);
P(2, i) = center(1);
end
end
L = nip.getNucleusAllLabeled(); %labeled nucleus image matrix
Cluster=false(size(L));
Single = false(size(L));
for i = 1:numel(ndA)
if ndA(i).cluster
Cluster = L==i | Cluster;
else
Single = L==i | Single;
end
end
Background = intersect(find(P(1,:) == 0),find(P(2,:) == 0)); %find the indices of background,i.e.coordinate(0,0)
%It is meaningless if a cluster has a position of (0,0). In that case, the cluster is recognized as background and removed
N(Background) = []; %Eliminate the count for the backgound
P(:,Background) = [];
%Check if there is any cluster %added on 1/10/17
if isempty(P)
%msgbox('No cluster has been identified in the image.');%create a message dialog box
%If no cluster has been identified,change the message shown on
%the legend of figure window
cluster = 'No cluster has been identified';
%Then, change nothing to the image.
rgb = addBorder(J, Cluster, [0, 1, 1]);
rgb = addBorder(rgb, Single, [0, 0, 1]);
else
NCluster = reshape(N, numel(N), 1);
NClusterText = cellstr(num2str(NCluster));
NClusterText = strtrim(NClusterText); %remove the leading white space from the strings
PCluster = reshape(P,2, numel(P)/2);
rgb = addBorder(J, Cluster, [0, 1, 1]);
rgb = addBorder(rgb, Single, [0, 0, 1]);
%overlay counts on clusters
for n = 1:numel(NClusterText)
label = NClusterText{n};
row = PCluster(1,n);
col = PCluster(2,n);
heightInPixels = 30;
color = [1 1 1];
rgb = overLayText(rgb, label, [row col], heightInPixels, color);
end
end
case NIPState.CalculatedMinNucleusArea
ndA = nip.getNucleusData();
L = nip.getNucleusAllLabeled(); %labeled nucleus image matrix
Cluster=false(size(L));
Single = false(size(L));
for i = 1:numel(ndA)
if ndA(i).cluster
Cluster = L==i | Cluster;
else
Single = L==i | Single;
end
end
Small=false(size(L));
for i = 1:numel(ndA)
if ndA(i).small
Small = L==i | Small;
end
end
N = zeros(1, length(ndA)); %neuron count of each cluster
P = zeros(2, length(ndA)); %position of each cluster
for i = 1:numel(ndA)
if ndA(i).cluster
N(i) = ndA(i).numNuclei;
center = ndA(i).centroid;
P(1,i) = center(2);
P(2, i) = center(1);
end
end
Background = intersect(find(P(1,:) == 0),find(P(2,:) == 0)); %find the indices of background,i.e.coordinate(0,0)
N(Background) = []; %Eliminate the count for the backgound
P(:,Background) = [];
%Check if there is any cluster %added on 1/10/17
if isempty(P)
%If no cluster has been identified, report on the legend
cluster = 'No cluster has been identified';
%Then, change nothing to the image.
J=nip.getNucleusImage();
rgb = addBorder(J, Cluster, [0, 1, 1]);%cyan
rgb = addBorder(rgb, Single, [0, 0, 1]);%blue
rgb = addBorder(rgb, Small, [1, 0, 1]);%magenta
else
NCluster = reshape(N, numel(N), 1);
NClusterText = cellstr(num2str(NCluster));
NClusterText = strtrim(NClusterText); %remove the leading white space from the strings
PCluster = reshape(P,2, numel(P)/2);
J=nip.getNucleusImage();
rgb = addBorder(J, Cluster, [0, 1, 1]);%cyan
rgb = addBorder(rgb, Single, [0, 0, 1]);%blue
rgb = addBorder(rgb, Small, [1, 0, 1]);%magenta
% rgb = insertText(rgb,[PCluster(2,:)',PCluster(1,:)'],NClusterText,'TextColor','white','FontSize',28, 'BoxOpacity',0);
%temp 10/28/16
%overlay counts on clusters
for n = 1:numel(NClusterText)
label = NClusterText{n};
row = PCluster(1,n);
col = PCluster(2,n);
heightInPixels = 30;
color = [1 1 1];
rgb = overLayText(rgb, label, [row col], heightInPixels, color);
end
end
case NIPState.SegmentedCells
I = nip.getCellImage();
CellMask = nip.getFirstCellMask();
rgb = addBorder(I, CellMask, [1, 0, 0]);
case NIPState.SeparatedBodiesFromNeurites
%Still show the neurite segmentation from previous step
CellMask = nip.getFirstCellMask();%from previous step: cell bodies and neurites
cbd = nip.getCellBodyData();
ocbm = nip.getOpenedCellBodyMask();%only cell bodies
neuriteMask = CellMask & ~ocbm; %only neurites
% cbaL = nip.getCellBodyAllLabeled();
% fnm = nip.getFirstNeuriteMask;
% fcnm = nip.getFirstConnectedNeuriteMask;
% funm = nip.getFirstUnconnectedNeuriteMask;
N = zeros(1, length(cbd)); %neuron count of each cluster
P = zeros(2, length(cbd)); %position of each cluster
for i = 1:numel(cbd)
N(i) = cbd(i).numberOfNuclei;
P(1,i) = cbd(i).centroidRow;
P(2, i) = cbd(i).centroidColumn;
end
Background = intersect(find(P(1,:) == 0),find(P(2,:) == 0)); %find the indices of background,i.e.coordinate(0,0)
N(Background) = []; %Eliminate the count for the backgound
P(:,Background) = [];
%check if there is any cell identified %1/10/17
if isempty(P)
%If no cell has been identified, change nothing to the image.
I = nip.getCellImage();
rgb = addBorder(I, ocbm, [1, 0, 0]);
%show the neurite in green
rgb = addBorder(rgb,neuriteMask, [0,1,0]);
else
NCell = reshape(N, numel(N), 1);
NCellText = cellstr(num2str(NCell));
NCellText = strtrim(NCellText); %remove the leading white space from the strings
PCell = reshape(P,2, numel(P)/2);
I = nip.getCellImage();
rgb = addBorder(I, ocbm, [1, 0, 0]);
%show the neurite in green
rgb = addBorder(rgb,neuriteMask, [0,1,0]);
% rgb = insertText(rgb,[PCell(2,:)',PCell(1,:)'],NCellText,'TextColor','white','FontSize',28, 'BoxOpacity',0);
%temp 10/28/16
%overlay counts on clusters
for n = 1:numel(NCellText)
label = NCellText{n};
row = PCell(1,n);
col = PCell(2,n);
heightInPixels = 30;
color = [1 1 1];
rgb = overLayText(rgb, label, [row col], heightInPixels, color);
end
end
case NIPState.ResegmentedNeurites
cnm = nip.getSecondConnectedNeuriteMask();
unm = nip.getSecondUnconnectedNeuriteMask();
ocbm = nip.getOpenedCellBodyMask();%only cell bodies
cbd = nip.getCellBodyData();
I = nip.getCellImage();
N = zeros(1, length(cbd)); %neuron count of each cluster
P = zeros(2, length(cbd)); %position of each cluster
for i = 1:numel(cbd)
N(i) = cbd(i).numberOfNuclei;
P(1,i) = cbd(i).centroidRow;
P(2, i) = cbd(i).centroidColumn;
end
Background = intersect(find(P(1,:) == 0),find(P(2,:) == 0)); %find the indices of background,i.e.coordinate(0,0)
N(Background) = []; %Eliminate the count for the backgound
P(:,Background) = [];
%check if there is any cell identified %1/10/17
if isempty(P)
%If no cell has been identified, change nothing to the image.
rgb = addBorder(I, ocbm, [1, 0, 0]);
rgb = addBorder(rgb, cnm, [0, 1, 0]);
rgb = addBorder(rgb, unm, [1, 1, 0]);
else
NCell = reshape(N, numel(N), 1);
NCellText = cellstr(num2str(NCell));
NCellText = strtrim(NCellText); %remove the leading white space from the strings
PCell = reshape(P,2, numel(P)/2);
%also have ngui.nip.getSecondNeuriteMask
rgb = addBorder(I, ocbm, [1, 0, 0]);
rgb = addBorder(rgb, cnm, [0, 1, 0]);
rgb = addBorder(rgb, unm, [1, 1, 0]);
% rgb = insertText(rgb,[PCell(2,:)',PCell(1,:)'],NCellText,'TextColor','white','FontSize',28, 'BoxOpacity',0);
%temp 10/28/16
%overlay counts on clusters
for n = 1:numel(NCellText)
label = NCellText{n};
row = PCell(1,n);
col = PCell(2,n);
heightInPixels = 30;
color = [1 1 1];
rgb = overLayText(rgb, label, [row col], heightInPixels, color);
end
end
case NIPState.ResegmentedNeuriteEdges %3rd Neurite Segmentation - added on 6/17/16
cnm = nip.getThirdConnectedNeuriteMask();
unm = nip.getThirdUnconnectedNeuriteMask();
ocbm = nip.getOpenedCellBodyMask();%only cell bodies
cbd = nip.getCellBodyData();
N = zeros(1, length(cbd)); %neuron count of each cluster
P = zeros(2, length(cbd)); %position of each cluster
for i = 1:numel(cbd)
N(i) = cbd(i).numberOfNuclei;
P(1,i) = cbd(i).centroidRow;
P(2, i) = cbd(i).centroidColumn;
end
Background = intersect(find(P(1,:) == 0),find(P(2,:) == 0)); %find the indices of background,i.e.coordinate(0,0)
N(Background) = []; %Eliminate the count for the backgound
P(:,Background) = [];
%check if there is any cell identified %1/10/17
if isempty(P)
%If no cluster has been identified, change nothing to the image.
I = nip.getCellImage();
rgb = addBorder(I, ocbm, [1, 0, 0]);
rgb = addBorder(rgb, cnm, [0, 1, 0]);
rgb = addBorder(rgb, unm, [1, 1, 0]);
else
NCell = reshape(N, numel(N), 1);
NCellText = cellstr(num2str(NCell));
NCellText = strtrim(NCellText); %remove the leading white space from the strings
PCell = reshape(P,2, numel(P)/2);
I = nip.getCellImage();
rgb = addBorder(I, ocbm, [1, 0, 0]);
rgb = addBorder(rgb, cnm, [0, 1, 0]);
rgb = addBorder(rgb, unm, [1, 1, 0]);
% rgb = insertText(rgb,[PCell(2,:)',PCell(1,:)'],NCellText,'TextColor','white','FontSize',28, 'BoxOpacity',0);
%temp 10/28/16
%overlay counts on clusters
for n = 1:numel(NCellText)
label = NCellText{n};
row = PCell(1,n);
col = PCell(2,n);
heightInPixels = 30;
color = [1 1 1];
rgb = overLayText(rgb, label, [row col], heightInPixels, color);
end
end
case NIPState.ClosedNeuriteMask
ccnm = nip.getClosedConnectedNeuriteMask();
cunm = nip.getClosedUnconnectedNeuriteMask();
ocbm = nip.getOpenedCellBodyMask();%only cell bodies
cbd = nip.getCellBodyData();
N = zeros(1, length(cbd)); %neuron count of each cluster
P = zeros(2, length(cbd)); %position of each cluster
for i = 1:numel(cbd)
N(i) = cbd(i).numberOfNuclei;
P(1,i) = cbd(i).centroidRow;
P(2, i) = cbd(i).centroidColumn;
end
Background = intersect(find(P(1,:) == 0),find(P(2,:) == 0)); %find the indices of background,i.e.coordinate(0,0)
N(Background) = []; %Eliminate the count for the backgound
P(:,Background) = [];
%check if there is any cell identified %1/10/17
if isempty(P)
%If no cell has been identified, change nothing to the image.
I = nip.getCellImage();
rgb = addBorder(I, ocbm, [1, 0, 0]);
rgb = addBorder(rgb, ccnm, [0, 1, 0]);
rgb = addBorder(rgb, cunm, [1, 1, 0]);
else
NCell = reshape(N, numel(N), 1);
NCellText = cellstr(num2str(NCell));
NCellText = strtrim(NCellText); %remove the leading white space from the strings
PCell = reshape(P,2, numel(P)/2);
I = nip.getCellImage();
rgb = addBorder(I, ocbm, [1, 0, 0]);
rgb = addBorder(rgb, ccnm, [0, 1, 0]);
rgb = addBorder(rgb, cunm, [1, 1, 0]);
% rgb = insertText(rgb,[PCell(2,:)',PCell(1,:)'],NCellText,'TextColor','white','FontSize',28, 'BoxOpacity',0);
%temp 10/28/16
%overlay counts on clusters
for n = 1:numel(NCellText)
label = NCellText{n};
row = PCell(1,n);
col = PCell(2,n);
heightInPixels = 30;
color = [1 1 1];
rgb = overLayText(rgb, label, [row col], heightInPixels, color);
end
end
case NIPState.Done
%need to create the final image
rgb = nip.getResultsImage;
end
end