Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

implement linear operator protocol for df hamiltonian #73

Merged
merged 2 commits into from
Nov 7, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion python/ffsim/contract/num_op_sum.py
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,6 @@ def num_op_sum_linop(
A LinearOperator that implements the action of the linear combination of number
operators.
"""
n_alpha, n_beta = nelec
dim_ = dim(norb, nelec)

def matvec(vec):
Expand Down
34 changes: 34 additions & 0 deletions python/ffsim/hamiltonians/double_factorized_hamiltonian.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,9 +13,13 @@
import dataclasses

import numpy as np
from scipy.sparse.linalg import LinearOperator

from ffsim.contract.diag_coulomb import diag_coulomb_linop
from ffsim.contract.num_op_sum import num_op_sum_linop
from ffsim.hamiltonians.molecular_hamiltonian import MolecularHamiltonian
from ffsim.linalg import double_factorized
from ffsim.states import dim


@dataclasses.dataclass(frozen=True)
Expand Down Expand Up @@ -221,13 +225,43 @@ def from_molecular_hamiltonian(
one_body_tensor=one_body_tensor,
diag_coulomb_mats=diag_coulomb_mats,
orbital_rotations=orbital_rotations,
constant=hamiltonian.constant,
)

if z_representation:
df_hamiltonian = df_hamiltonian.to_z_representation()

return df_hamiltonian

def _linear_operator_(self, norb: int, nelec: tuple[int, int]) -> LinearOperator:
"""Return a SciPy LinearOperator representing the object."""
dim_ = dim(norb, nelec)
eigs, vecs = np.linalg.eigh(self.one_body_tensor)
num_linop = num_op_sum_linop(eigs, norb, nelec, orbital_rotation=vecs)
diag_coulomb_linops = [
diag_coulomb_linop(
diag_coulomb_mat,
norb,
nelec,
orbital_rotation=orbital_rotation,
z_representation=self.z_representation,
)
for diag_coulomb_mat, orbital_rotation in zip(
self.diag_coulomb_mats, self.orbital_rotations
)
]

def matvec(vec: np.ndarray):
result = self.constant * vec
result += num_linop @ vec
for linop in diag_coulomb_linops:
result += linop @ vec
return result

return LinearOperator(
shape=(dim_, dim_), matvec=matvec, rmatvec=matvec, dtype=complex
)


def _df_z_representation(
diag_coulomb_mats: np.ndarray, orbital_rotations: np.ndarray
Expand Down
3 changes: 1 addition & 2 deletions python/ffsim/hamiltonians/molecular_hamiltonian.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,6 @@
import itertools

import numpy as np
import scipy.sparse.linalg
from pyscf.fci.direct_nosym import absorb_h1e, contract_1e, contract_2e, make_hdiag
from scipy.sparse.linalg import LinearOperator

Expand Down Expand Up @@ -82,7 +81,7 @@ def matvec(vec: np.ndarray):
)
return result

return scipy.sparse.linalg.LinearOperator(
return LinearOperator(
shape=(dim_, dim_), matvec=matvec, rmatvec=matvec, dtype=complex
)

Expand Down
63 changes: 17 additions & 46 deletions tests/hamiltonians/double_factorized_hamiltonian_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,64 +20,35 @@


@pytest.mark.parametrize("z_representation", [False, True])
def test_double_factorized_hamiltonian(z_representation: bool):
# set parameters
def test_linear_operator(z_representation: bool):
"""Test linear operator."""
norb = 4
nelec = (2, 2)
rng = np.random.default_rng(2474)

# generate random Hamiltonian
dim = ffsim.dim(norb, nelec)
one_body_tensor = ffsim.random.random_hermitian(norb, seed=2474)
two_body_tensor = ffsim.random.random_two_body_tensor_real(norb, seed=7054)
mol_hamiltonian = ffsim.MolecularHamiltonian(one_body_tensor, two_body_tensor)
hamiltonian = ffsim.linear_operator(
mol_hamiltonian,
norb=norb,
nelec=nelec,
one_body_tensor = ffsim.random.random_hermitian(norb, seed=rng)
two_body_tensor = ffsim.random.random_two_body_tensor_real(norb, seed=rng)
constant = rng.standard_normal()
mol_hamiltonian = ffsim.MolecularHamiltonian(
one_body_tensor, two_body_tensor, constant
)

# perform double factorization
df_hamiltonian = ffsim.DoubleFactorizedHamiltonian.from_molecular_hamiltonian(
mol_hamiltonian,
z_representation=z_representation,
)

# generate random state
actual_linop = ffsim.linear_operator(df_hamiltonian, norb, nelec)
expected_linop = ffsim.linear_operator(mol_hamiltonian, norb, nelec)

dim = ffsim.dim(norb, nelec)
state = ffsim.random.random_statevector(dim, seed=1360)

# apply Hamiltonian terms
result = df_hamiltonian.constant * state

eigs, vecs = np.linalg.eigh(df_hamiltonian.one_body_tensor)
tmp = ffsim.apply_orbital_rotation(state, vecs.T.conj(), norb=norb, nelec=nelec)
tmp = ffsim.contract.contract_num_op_sum(tmp, eigs, norb=norb, nelec=nelec)
tmp = ffsim.apply_orbital_rotation(tmp, vecs, norb=norb, nelec=nelec)
result += tmp

for diag_coulomb_mat, orbital_rotation in zip(
df_hamiltonian.diag_coulomb_mats, df_hamiltonian.orbital_rotations
):
tmp = ffsim.apply_orbital_rotation(
state, orbital_rotation.T.conj(), norb=norb, nelec=nelec
)
tmp = ffsim.contract.contract_diag_coulomb(
tmp,
diag_coulomb_mat,
norb=norb,
nelec=nelec,
z_representation=z_representation,
)
tmp = ffsim.apply_orbital_rotation(
tmp, orbital_rotation, norb=norb, nelec=nelec
)
result += tmp

# apply Hamiltonian directly
expected = hamiltonian @ state

# check agreement
np.testing.assert_allclose(result, expected, atol=1e-8)
state = ffsim.random.random_statevector(dim, seed=rng)

actual = actual_linop @ state
expected = expected_linop @ state

np.testing.assert_allclose(actual, expected, atol=1e-8)


def test_z_representation_round_trip():
Expand Down