Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

move slater sampler tests to separate file #342

Merged
merged 1 commit into from
Nov 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
136 changes: 136 additions & 0 deletions tests/python/states/sampler_slater_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@
# (C) Copyright IBM 2024.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Tests for sampling Slater determinants."""

from __future__ import annotations

import itertools

import numpy as np
import pytest

import ffsim
from ffsim.states.bitstring import BitstringType


@pytest.mark.parametrize(
"norb, nelec, bitstring_type",
[
(norb, nelec, bitstring_type)
for (norb, nelec), bitstring_type in itertools.product(
ffsim.testing.generate_norb_nelec(range(1, 5)), BitstringType
)
],
)
def test_sample_slater_determinant_spinful(
norb: int, nelec: tuple[int, int], bitstring_type: BitstringType
):
"""Test sample Slater determinant, spinful."""
rng = np.random.default_rng(1234)
shots = 1000
for _ in range(min(2, ffsim.dim(norb, nelec))):
rotation_a = ffsim.random.random_unitary(norb, seed=rng)
rotation_b = ffsim.random.random_unitary(norb, seed=rng)
occupied_orbitals = ffsim.testing.random_occupied_orbitals(
norb, nelec, seed=rng
)
rdm_a, rdm_b = ffsim.slater_determinant_rdms(
norb, occupied_orbitals, (rotation_a, rotation_b)
)
vec = ffsim.slater_determinant(
norb, occupied_orbitals, (rotation_a, rotation_b)
)
test_distribution = np.abs(vec) ** 2
samples = ffsim.sample_slater_determinant(
(rdm_a, rdm_b),
norb,
nelec,
shots=shots,
bitstring_type=bitstring_type,
seed=rng,
)
addresses = ffsim.strings_to_addresses(samples, norb, nelec)
indices, counts = np.unique(addresses, return_counts=True)
assert np.sum(counts) == shots
empirical_distribution = np.zeros(ffsim.dim(norb, nelec), dtype=float)
empirical_distribution[indices] = counts / shots
assert np.sum(np.sqrt(test_distribution * empirical_distribution)) > 0.99


@pytest.mark.parametrize(
"norb, nelec, bitstring_type",
[
(norb, nelec, bitstring_type)
for (norb, nelec), bitstring_type in itertools.product(
ffsim.testing.generate_norb_nocc(range(1, 5)), BitstringType
)
],
)
def test_sample_slater_determinant_spinless(
norb: int, nelec: int, bitstring_type: BitstringType
):
"""Test sample Slater determinant, spinless."""
rng = np.random.default_rng(1234)
shots = 1000
rotation = ffsim.random.random_unitary(norb, seed=rng)
for occupied_orbitals in itertools.combinations(range(norb), nelec):
rdm = ffsim.slater_determinant_rdms(norb, occupied_orbitals, rotation, rank=1)
vec = ffsim.slater_determinant(norb, occupied_orbitals, rotation)
test_distribution = np.abs(vec) ** 2
samples = ffsim.sample_slater_determinant(
rdm, norb, nelec, shots=shots, bitstring_type=bitstring_type, seed=rng
)
addresses = ffsim.strings_to_addresses(samples, norb, nelec)
indices, counts = np.unique(addresses, return_counts=True)
assert np.sum(counts) == shots
empirical_distribution = np.zeros(ffsim.dim(norb, nelec), dtype=float)
empirical_distribution[indices] = counts / shots
assert np.sum(np.sqrt(test_distribution * empirical_distribution)) > 0.99


def test_sample_slater_determinant_large():
"""Test sample Slater determinant for a larger number of orbitals."""
norb = 6
nelec = (3, 2)

rng = np.random.default_rng(1234)
shots = 5000
rotation_a = ffsim.random.random_unitary(norb, seed=rng)
rotation_b = ffsim.random.random_unitary(norb, seed=rng)
occupied_orbitals = ((0, 2, 3), (2, 4))
rdm_a, rdm_b = ffsim.slater_determinant_rdms(
norb, occupied_orbitals, (rotation_a, rotation_b)
)
vec = ffsim.slater_determinant(norb, occupied_orbitals, (rotation_a, rotation_b))
test_distribution = np.abs(vec) ** 2
samples = ffsim.sample_slater_determinant(
(rdm_a, rdm_b), norb, nelec, shots=shots, seed=rng
)
addresses = ffsim.strings_to_addresses(samples, norb, nelec)
indices, counts = np.unique(addresses, return_counts=True)
assert np.sum(counts) == shots
empirical_distribution = np.zeros(ffsim.dim(norb, nelec), dtype=float)
empirical_distribution[indices] = counts / shots
assert np.sum(np.sqrt(test_distribution * empirical_distribution)) > 0.99


def test_sample_slater_determinant_restrict():
"""Test sample Slater determinant with subset of orbitals."""
norb = 8
nelec = (4, 3)

shots = 10
occupied_orbitals = ((0, 2, 3, 5), (2, 3, 4))
rdm_a, rdm_b = ffsim.slater_determinant_rdms(norb, occupied_orbitals)
samples = ffsim.sample_slater_determinant(
(rdm_a, rdm_b), norb, nelec, orbs=([1, 2, 5], [3, 4, 5]), shots=shots
)
assert samples == ["011110"] * 10
116 changes: 0 additions & 116 deletions tests/python/states/slater_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,6 @@
import pytest

import ffsim
from ffsim.states.bitstring import BitstringType


@pytest.mark.parametrize("norb, nelec", ffsim.testing.generate_norb_nocc([4, 5]))
Expand Down Expand Up @@ -69,118 +68,3 @@ def test_slater_determinant_amplitudes_spinful(norb: int, nelec: tuple[int, int]
orbital_rotation=(orb_rot_a, orb_rot_b),
)
ffsim.testing.assert_allclose_up_to_global_phase(actual, expected)


@pytest.mark.parametrize(
"norb, nelec, bitstring_type",
[
(norb, nelec, bitstring_type)
for (norb, nelec), bitstring_type in itertools.product(
ffsim.testing.generate_norb_nelec(range(1, 5)), BitstringType
)
],
)
def test_sample_slater_determinant_spinful(
norb: int, nelec: tuple[int, int], bitstring_type: BitstringType
):
"""Test sample Slater determinant, spinful."""
rng = np.random.default_rng(1234)
shots = 1000
for _ in range(min(2, ffsim.dim(norb, nelec))):
rotation_a = ffsim.random.random_unitary(norb, seed=rng)
rotation_b = ffsim.random.random_unitary(norb, seed=rng)
occupied_orbitals = ffsim.testing.random_occupied_orbitals(
norb, nelec, seed=rng
)
rdm_a, rdm_b = ffsim.slater_determinant_rdms(
norb, occupied_orbitals, (rotation_a, rotation_b)
)
vec = ffsim.slater_determinant(
norb, occupied_orbitals, (rotation_a, rotation_b)
)
test_distribution = np.abs(vec) ** 2
samples = ffsim.sample_slater_determinant(
(rdm_a, rdm_b),
norb,
nelec,
shots=shots,
bitstring_type=bitstring_type,
seed=rng,
)
addresses = ffsim.strings_to_addresses(samples, norb, nelec)
indices, counts = np.unique(addresses, return_counts=True)
assert np.sum(counts) == shots
empirical_distribution = np.zeros(ffsim.dim(norb, nelec), dtype=float)
empirical_distribution[indices] = counts / shots
assert np.sum(np.sqrt(test_distribution * empirical_distribution)) > 0.99


@pytest.mark.parametrize(
"norb, nelec, bitstring_type",
[
(norb, nelec, bitstring_type)
for (norb, nelec), bitstring_type in itertools.product(
ffsim.testing.generate_norb_nocc(range(1, 5)), BitstringType
)
],
)
def test_sample_slater_determinant_spinless(
norb: int, nelec: int, bitstring_type: BitstringType
):
"""Test sample Slater determinant, spinless."""
rng = np.random.default_rng(1234)
shots = 1000
rotation = ffsim.random.random_unitary(norb, seed=rng)
for occupied_orbitals in itertools.combinations(range(norb), nelec):
rdm = ffsim.slater_determinant_rdms(norb, occupied_orbitals, rotation, rank=1)
vec = ffsim.slater_determinant(norb, occupied_orbitals, rotation)
test_distribution = np.abs(vec) ** 2
samples = ffsim.sample_slater_determinant(
rdm, norb, nelec, shots=shots, bitstring_type=bitstring_type, seed=rng
)
addresses = ffsim.strings_to_addresses(samples, norb, nelec)
indices, counts = np.unique(addresses, return_counts=True)
assert np.sum(counts) == shots
empirical_distribution = np.zeros(ffsim.dim(norb, nelec), dtype=float)
empirical_distribution[indices] = counts / shots
assert np.sum(np.sqrt(test_distribution * empirical_distribution)) > 0.99


def test_sample_slater_determinant_large():
"""Test sample Slater determinant for a larger number of orbitals."""
norb = 6
nelec = (3, 2)

rng = np.random.default_rng(1234)
shots = 5000
rotation_a = ffsim.random.random_unitary(norb, seed=rng)
rotation_b = ffsim.random.random_unitary(norb, seed=rng)
occupied_orbitals = ((0, 2, 3), (2, 4))
rdm_a, rdm_b = ffsim.slater_determinant_rdms(
norb, occupied_orbitals, (rotation_a, rotation_b)
)
vec = ffsim.slater_determinant(norb, occupied_orbitals, (rotation_a, rotation_b))
test_distribution = np.abs(vec) ** 2
samples = ffsim.sample_slater_determinant(
(rdm_a, rdm_b), norb, nelec, shots=shots, seed=rng
)
addresses = ffsim.strings_to_addresses(samples, norb, nelec)
indices, counts = np.unique(addresses, return_counts=True)
assert np.sum(counts) == shots
empirical_distribution = np.zeros(ffsim.dim(norb, nelec), dtype=float)
empirical_distribution[indices] = counts / shots
assert np.sum(np.sqrt(test_distribution * empirical_distribution)) > 0.99


def test_sample_slater_determinant_restrict():
"""Test sample Slater determinant with subset of orbitals."""
norb = 8
nelec = (4, 3)

shots = 10
occupied_orbitals = ((0, 2, 3, 5), (2, 3, 4))
rdm_a, rdm_b = ffsim.slater_determinant_rdms(norb, occupied_orbitals)
samples = ffsim.sample_slater_determinant(
(rdm_a, rdm_b), norb, nelec, orbs=([1, 2, 5], [3, 4, 5]), shots=shots
)
assert samples == ["011110"] * 10
Loading