Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add num-num interaction and hopgate and improve gates docs #25

Merged
merged 1 commit into from
Sep 21, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions python/ffsim/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,9 @@
from ffsim.gates import (
apply_diag_coulomb_evolution,
apply_givens_rotation,
apply_hop_gate,
apply_num_interaction,
apply_num_num_interaction,
apply_num_op_prod_interaction,
apply_num_op_sum_evolution,
apply_orbital_rotation,
Expand Down
2 changes: 2 additions & 0 deletions python/ffsim/gates/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,9 @@
from ffsim.gates.diag_coulomb import apply_diag_coulomb_evolution
from ffsim.gates.gates import (
apply_givens_rotation,
apply_hop_gate,
apply_num_interaction,
apply_num_num_interaction,
apply_num_op_prod_interaction,
apply_tunneling_interaction,
)
Expand Down
3 changes: 2 additions & 1 deletion python/ffsim/gates/diag_coulomb.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,8 @@ def apply_diag_coulomb_evolution(
.. math::

\mathcal{U}
\exp(-i t \sum_{i, j, \sigma, \tau} Z_{ij} n_{i, \sigma} n_{j, \tau} / 2)
\exp\left(-i t \sum_{i, j, \sigma, \tau}
Z_{ij} n_{i, \sigma} n_{j, \tau} / 2\right)
\mathcal{U}^\dagger

where :math:`n_{i, \sigma}` denotes the number operator on orbital :math:`i`
Expand Down
151 changes: 145 additions & 6 deletions python/ffsim/gates/gates.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,19 @@ def apply_givens_rotation(

.. math::

G(\theta) = \exp(\theta (a^\dagger_i a_j - a\dagger_j a_i))
\text{G}(\theta) = \exp\left(\theta (a^\dagger_i a_j - a^\dagger_j a_i)\right)

Under the Jordan-Wigner transform, this gate has the following matrix when applied
to neighboring qubits:

.. math::

\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \cos(\theta) & -\sin(\theta) & 0\\
0 & \sin(\theta) & \cos(\theta) & 0\\
0 & 0 & 0 & 1 \\
\end{pmatrix}

Args:
vec: The state vector to be transformed.
Expand Down Expand Up @@ -102,7 +114,19 @@ def apply_tunneling_interaction(

.. math::

T(\theta) = \exp(i \theta (a^\dagger_i a_j + a\dagger_j a_i))
\text{T}(\theta) = \exp\left(i \theta (a^\dagger_i a_j + a^\dagger_j a_i)\right)

Under the Jordan-Wigner transform, this gate has the following matrix when applied
to neighboring qubits:

.. math::

\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \cos(\theta) & i \sin(\theta) & 0\\
0 & i \sin(\theta) & \cos(\theta) & 0\\
0 & 0 & 0 & 1 \\
\end{pmatrix}

Args:
vec: The state vector to be transformed.
Expand Down Expand Up @@ -147,7 +171,7 @@ def apply_num_interaction(

.. math::

N(\theta) = \exp(i \theta a^\dagger_i a_i)
\text{N}(\theta) = \exp\left(i \theta a^\dagger_i a_i\right)

Args:
vec: The state vector to be transformed.
Expand Down Expand Up @@ -184,6 +208,62 @@ def apply_num_interaction(
return vec


def apply_num_num_interaction(
vec: np.ndarray,
theta: float,
target_orbs: tuple[int, int],
norb: int,
nelec: tuple[int, int],
*,
copy: bool = True,
):
r"""Apply a number-number interaction gate.

The number-number interaction gate is

.. math::

\text{NN}(\theta) = \exp\left(i \theta a^\dagger_i a_i a^\dagger_j a_j\right)

Args:
vec: The state vector to be transformed.
theta: The rotation angle.
target_orbs: The orbitals on which to apply the interaction.
norb: The number of spatial orbitals.
nelec: The number of alpha and beta electrons.
copy: Whether to copy the vector before operating on it.
- If ``copy=True`` then this function always returns a newly allocated
vector and the original vector is left untouched.
- If ``copy=False`` then this function may still return a newly allocated
vector, but the original vector may have its data overwritten.
It is also possible that the original vector is returned,
modified in-place.
"""
if len(set(target_orbs)) == 1:
raise ValueError(
f"The orbitals to interact must be distinct. Got {target_orbs}."
)
if copy:
vec = vec.copy()
vec = apply_num_op_prod_interaction(
vec,
theta,
target_orbs=(target_orbs, []),
norb=norb,
nelec=nelec,
copy=False,
)
vec = apply_num_op_prod_interaction(
vec,
theta,
target_orbs=([], target_orbs),
norb=norb,
nelec=nelec,
copy=False,
)
return vec


def apply_num_op_prod_interaction(
vec: np.ndarray,
theta: float,
Expand All @@ -199,13 +279,15 @@ def apply_num_op_prod_interaction(

.. math::

NP(\theta) = \exp(i \theta \prod a^\dagger_{i, \sigma} a_{i, \sigma})
\text{NP}(\theta) =
\exp\left(i \theta \prod a^\dagger_{i, \sigma} a_{i, \sigma}\right)

Args:
vec: The state vector to be transformed.
theta: The rotation angle.
target_orbs: The orbitals on which to apply the interaction. This should
be a tuple of (orbital, spin) pairs.
target_orbs: A pair of lists of integers giving the orbitals on which to apply
the interaction. The first list specifies the alpha orbitals and the second
list specifies the beta orbitals.
norb: The number of spatial orbitals.
nelec: The number of alpha and beta electrons.
copy: Whether to copy the vector before operating on it.
Expand All @@ -228,3 +310,60 @@ def apply_num_op_prod_interaction(
copy=False,
)
return vec


def apply_hop_gate(
vec: np.ndarray,
theta: float,
target_orbs: tuple[int, int],
norb: int,
nelec: tuple[int, int],
*,
copy: bool = True,
) -> np.ndarray:
r"""Apply a hop gate.

A "hop gate" is a Givens rotation gate followed by a number-number interaction
gate with angle pi:

.. math::

\text{Hop}(\theta) = \text{NN}(\pi) \text{G}(\theta)
= \exp\left(i \pi a^\dagger_i a_i a^\dagger_j a_j\right)
\exp\left(\theta (a^\dagger_i a_j - a^\dagger_j a_i)\right)

Under the Jordan-Wigner transform, this gate has the following matrix when applied
to neighboring qubits:

.. math::

\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \cos(\theta) & -\sin(\theta) & 0\\
0 & \sin(\theta) & \cos(\theta) & 0\\
0 & 0 & 0 & -1 \\
\end{pmatrix}

Args:
vec: The state vector to be transformed.
theta: The rotation angle.
target_orbs: The orbitals (i, j) to rotate.
norb: The number of spatial orbitals.
nelec: The number of alpha and beta electrons.
copy: Whether to copy the vector before operating on it.
- If ``copy=True`` then this function always returns a newly allocated
vector and the original vector is left untouched.
- If ``copy=False`` then this function may still return a newly allocated
vector, but the original vector may have its data overwritten.
It is also possible that the original vector is returned,
modified in-place.
"""
if copy:
vec = vec.copy()
vec = apply_givens_rotation(
vec, theta, target_orbs, norb=norb, nelec=nelec, copy=False
)
vec = apply_num_num_interaction(
vec, np.pi, target_orbs, norb=norb, nelec=nelec, copy=False
)
return vec
2 changes: 1 addition & 1 deletion python/ffsim/gates/num_op_sum.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ def apply_num_op_sum_evolution(
.. math::

\mathcal{U}
\exp(-i t \sum_{i, \sigma} \lambda_i n_{i, \sigma})
\exp\left(-i t \sum_{i, \sigma} \lambda_i n_{i, \sigma}\right)
\mathcal{U}^\dagger

where :math:`n_{i, \sigma}` denotes the number operator on orbital :math:`i`
Expand Down
2 changes: 1 addition & 1 deletion python/ffsim/gates/orbital_rotation.py
Original file line number Diff line number Diff line change
Expand Up @@ -145,7 +145,7 @@ def apply_orbital_rotation(

.. math::

\exp(\sum_{ij} log(U)_{ij} a^\dagger{i} a_j)
\exp\left(\sum_{ij} \log(U)_{ij} a^\dagger_i a_j\right)

Args:
vec: The state vector to be transformed.
Expand Down
Loading